台灣地區集合住宅室内空氣環境使用後評估實證分析

An Empirical Study on Post－Occupancy Evaluation of Housing Indoor Air Environment in Taiwan

江哲銘＊王文安＊＊
Che－Ming Chiang＊，Wen－An Wang＊＊

摘 要

有鑑於我國居住空間室内空氣品質有日益下降的䞹勢，但是一直缺乏定量解析恶化現象之本土性研究。本研究乃以室内空氣品質使用後評估自動連續量測法，進行台灣地區台北，台南，高雄三地之集合住宅空氣環境實測診断，共計進行七個測例，十九個測次，五十七個測點之二氧化碳 $\left(\mathrm{CO}_{2}\right)$ ，一氧化碳（CO），浮游粉塵（PM10）測試，以實證了解台灣地區居住空間室内空氣品質之一般水準，與國際基準值之比較。同時，本研究分別就不同季節之污染源測值進行比較分析，以了解居住空間室内空氣品質影響因子；並對室内外空間與室内不同空間之空氣污染影響因子進行相關性分析，以説明造成我國居住空間室内空氣品質下降之主要因素及其影響程度。

Abstract

The quality of air in our living environment is worsen，however，there is always lack of domestic fix－ quantity study on such deteriorating phenomenon．The study applied automatic successive measurement method on post－occupancy evaluation of indoor air，factual examined housing indoor air environment of 3 areas in Taiwan，including Taipei Tainan and Kaohsiung． 7 testing cases and 19 testing times， 57 testing points on $\mathrm{CO}_{2}, \mathrm{CO}$ as well as PM10 was accomplished in order to compare the quality of housing indoor air in Taiwan with foreign criterior．At the same time，the study proceeded comparative analysis of pollu－ tion source testing value in different seasons to investigate the influence factor of housing indoor air qual－ ity．It is also correlated analysed influence factor on air pollution between indoor and outdoor environments to drawn out the main factor and influence degree of our worsen housing indoor air．

[^0]
一，前言

近代都市文明的發展已促使人類居住環境實質涵構產生階段性的結構性改築。由於地球環境的持續性異常變遷，臭氣層破壞的事實已促使人類反思整體區域與都市環境面臨破壞性衝擊時應如何研擬因應對策。

都市化與工業化發展歷程，已使都市聚居地區之外部環境因受大量環境污染影響而益顯惡化。以影響人類健康甚鉅的空氣環境而言，都市地區建築物之外部環境因受大量汽機車，工廠林立及營建工地等排放空氣污染物影響，使得外氣中污染物濃度增加。如圖一所示，外氣之二氧化碳濃度已由 1958 年的 315 ppm 昇高至 1982 年的 340 ppm ，顯示大氣中二氧化碳濃度值因人類燃燒石化燃料而逐年增加。至1993年本研究所測得之二氧化碳外氣濃度值則高達 385 ppm ，同時，大氣之空氣污染物標準指標值（PSI值）也居高不下。隨著都市環境品質惡化與建築物大型化，高層化，綜合化發展趨勢下，為能同時解決諸項建築與空調課題，大規模氣密性建築物已蔚為建築物型態規劃的主流。然而，以空氣品質的觀點而言，此種建築型態的規劃設計模式對於使用者有負面之影響，其影響程度甚值得吾人關心深究。由日漸增加之病大樓症候群案例已使吾人不得不正視此課題，對保障人類居住空間安全健康舒適為職責的建築相關從業人員而言，更是一時代性挑戰。

現階段人類生活型態中，約有 90% 的時間待在室內空間，而日益封閉的建築空間設計處理型態，已使室內污染物的含量濃度值超過室外含量濃度值，進而長期性影響到人體健康程度。隨著科技發展進步，人類於居住空間內使用的生活物件與電化設備日益繁多，現代化的空間配件與活動型態已使室內空氣污染源多源增量，對健康產生警示影響。

依居住空間室內空氣污染源之來源區分，可分為進入外氣，室內人員活動，空調系統，居住設備與生活物件，建築材料與有機物質等六大類，如圖二所示。

圖一 二氧化碳歷年變動圖

圖二 集合住宅室內空氣污染物來源示意圖

經歸納後，室內空氣污染物可分類為氣狀污染物與浮游粒狀污染物兩種物質。雖然影響室內空氣品質的污染物因子繁多，依美國冷凍空調協會（ASHRAE）換氣基準規定以 CO_{2} 濃度指標做為訂定通風換氣量標準，而空氣污染物標準指標值中的五種主要污染物，又以浮游粉塵 （PM10）與CO濃度所佔比率最高，合計幾達 90% ；另於日本建築基準法與建物管理法相關規定中亦規定污染物之評估項目，於氣狀污染物以二氧化碳 $\left(\mathrm{CO}_{2}\right)$ ，一氧化碳 (CO) 為主，而粒狀污染物則以浮游粉塵（PM10）為評估對象；本研究亦因限於人力及量測儀器，是故先以此三項污染物進行居住空間室內空氣品質定量診斷評估，以做為評估台灣地區居住空間使用後空氣環境品質之指標，並擬藉由定量自動化量測儀器系統之檢驗，經由定量化解析診斷之過程，分析居住空間室內空氣品質影響因子之相關性，以做為未來具體提出改善居住空間室內空氣環境之準據。

二，室内空氣環境使用後評估法之建立與檢騟

基前所述，本研究以 CO_{2} ， CO 與 PM10等三項污染物做為室內空氣品質評估指標。為考慮居住空間現場量測的適用性與減低對測試對象日常生活的干擾性，本研究之定量量測儀器以自動化為目的，乃以室內環境品質自動連續量測法，做為進行室內空氣品質實測與定量化評估應用的量測架構。該量測架構之項目除 $\mathrm{CO}_{2}, ~ \mathrm{CO}, ~ \mathrm{PM} 10$ 等三項外，另進行乾球溫度，相對洷度，氣流，熱輻射，照度，噪音，振動等室內環境因子之定量測定，以做為綜合評估判斷室內空氣品質變動狀況的參考依據。

國內外有關室內空氣環境品質量測方法與分析系統比較如表一所示，日本建築環境衛生

表－室內空氣品質現場量測法比較（ $\mathrm{CO}_{2}, ~ \mathrm{CO}, ~ \mathrm{PM} 10$ ）

		日本建築環境衛生管理基準之量測法	JIS標準量測法	CNS準量測法	本研究之量測法	備 註
量 測 項目		－粉塵 －CO － CO_{2}	－粉塵JIS B7954 －CO JIS B7951 － CO_{2} JIS D1030	－環境大氣淨遊粉塵濃度測度方法 CNS K9006	－浮游粉塵 － CO － CO_{2}	
$\begin{aligned} & \text { 儀 } \\ & \text { 器 } \end{aligned}$	浮游粉鹿	- 重量法 - 散亂光法 - 透過率法	- 散亂光法 - 吸光法 - 水晶壓電法 - β 線吸收法 - 接觸帶電法		－散亂光法 （相對濃度）	
量 測	CO	- 檢知管方式 - 紅外線吸收法 - 定電位電解法	- 紅外線吸收法 - 氫焰離子檢出法 - 定電位電解法		－定電位電解法	
$\begin{aligned} & \text { 方 } \\ & \text { 法 } \end{aligned}$	CO_{2}	- 檢知管方式 - 氣體干涉計法 - 紅外線吸收法 - 氫氧化鋇法	－紅外線吸收法	CNS A3118 - 氫氧化鋇法 - 簡易定量法 - 檢知管法 - 氣體干涉計法 - 紅外線吸收法	－非分散型紅外線吸收法	
測 點 分 佈	水平分佈	依使用狀況，構造空調方式，系統及樓地板面積彈性選定（約300M2為一測點）		CNS A3118 水平方向充分設置測點，約16－25m²之比例取一測點	限於量測儀器僅有三組及考慮室內活動正常進行 ，故依空間特性適當選定三測點	依室內特性 空間的密度，形狀，桌子，傢俱類之配置等
	垂直分佈 （量測高度）	－FL 75～120 cm		CNS A3118 - 天花板附近 - 人之呼吸帶位置 （FL 120 cm ） －接近地面之位置	－FL 90～120 cm	但以選定室內之對角線上為佳
量測瀕率－時間	量測瀕率	每2個月定期1回量測，每回1日				長時間連續量測之測點高度以室內
	量測時間	1日 3 次瞬時量測 （1）上班後約 1 小時 （2）中午時間 （3）下班前約 1 小時		CNS 6873 視室內之規模，種類與換氣量之大小等適當變更之至少在 30 分鐘以內反覆測定 5 次以上	24小時長時間自動連續量測	人員坐著高度 $90 \sim 120$ cm為佳

管理基準在室內空氣環境清淨部份，規定有室內汗染物量測項目，量測，基準儀器量測方法，室内測點分佈，量測頻率及時間等作為室內空氣品質管理的量測方法。反觀我國建築方面之相關法令與GNS國家標準仍未能有室內空氣品質的量測方法與基準，以供管制與測定室

内空氣品質現況。
本研究量測儀器詳細內容如表二所示，整體量測儀器連線系統如圖三所示，其量測資料分析系統流程如圖四所示。為期於現場測試時，能保護全組儀器測試期間，不受室內使用者碰撞或觸摸，避免因引起居住空間內小孩或客人好奇，而形成異常性活動干擾，影響儀器測試值之準確性，甚至因而斷電而中斷測試工作，乃設計形如音箱之儀器測試架，以保護儀器及減低測試帶給使用者生活作息上的不便。該測試架測點高度為地板以上 90 cm 至 120 cm ，量測取樣頻率為 0.2 Hz （5秒／次）。

（一）實驗室檢驗

為檢測本測試分析系統之適用性，乃先依檢測目的選定密閉式實験室與非密閉式空間進行預備測試檢驗，如表三所示。

經各項實驗室檢測後可得到以下兩項結論

表二 室內空氣品質使用後評估自動連縜量測儀器表

量測項目		量測儀器	構 成	量測原理	量測範圍
1	CO 濃度	$\mathrm{CO} / \mathrm{CO}_{2}$ 監測器	$\begin{gathered} \text { 本體 } \\ \text { 捕氣装置 } \end{gathered}$標準氣體	定電位電解法	$0 \sim 150 \mathrm{ppm}$
2	CO_{2} 濃度			非分散型紅外線吸收法	0～5000ppm
3	PM10濃度	雷射粉塵計	本體	散亂光方式（相對濃度）	$0 \sim 1 \mathrm{mg} / \mathrm{m}^{3}$
	動化記錄	數位記錄器	本體	電壓信號接收	可同步輸入8頻道

圖三 量測儀器連接系統圖

1．儀器在 24 小時量測中不採中斷校正方式，並不會產生濃度累積，而使儀器感度降低現象，其自動量測性能運作正常。
2．數位記錄器自動記錄之轉換誤差與儀器置入量測架內之量測誤差，其誤差值很小，均在量測儀器精度範圍之內。

（二）現場檢測

本研究為求能對居住空間使用後室內空氣品質變動實態，作進一步診斷測試解析適用性之檢驗，今以其中一例説明：台南市某國宅社區林宅進行春季實測診斷，以了解測試分析系統於室內空間實測上之適用性。室內外測點位置如圖五所示，分別於客廳，臥室與陽台進行測試診斷，量測高度為樓地板以上 90 cm 至 120 cm 。該空間位於以七層四併電梯公寓之二樓，主要構造為RC柱樑構造，磚隔間。

由測試結果分析與居住者使用行為訪談印證得知，臥室的 CO_{2} 濃度於凌晨二時起急驟由 450 ppm 升高至 1050 ppm ，直至上午八時才因打開開口部門窗而流通空氣降低 CO_{2} 濃度值，如圖六所示。客廳的 CO_{2} 濃度於夜間雖有室內人員活動，但因落地窗經常打開著，而使室內空氣

表三 室內空氣品質使用後評估自動連續量測法檢測項目概要表

賽驗場所	檢測項目	檢測內容	檢測目的	備 註
密 閉 式 空 間	1．儀器性能檢測	－儀器長時間連續量間連續量測運作 （24小時量測）	－校正時間與污染濃度之關係，有無濃度累積而使感度低下之現象。 －長時間自動連續量測性能（同步連續量測，操作及記錄應為自動化）	－在密閉氣密性良好的空間加以污染源製造模擬，使儀器在高污染濃度下檢測其有無感度低下現象或使其誤差值更為明顯。
		－記録資料之轉換誤差	－自動數位記錄器所記錄電壓信號之轉換值與儀器本體所顯示平均值的誤差比較。	
	2．量測架檢測	－延長管之檢測	－檢討儀器的SENSOR因增加延長管線之量測誤差	
		－量測架之檢測	－檢討儀器本體及SENSOR置於量測架內與不置於量測架內之量測誤差	
非 密 閉 式 空 間	1．室內測點分佈檢測	－水平面測點分佈	－檢討在非密閉正常使用的室內空間，變換不同使用設定狀態下其室內水平面濃度分佈之差異	－室內污染源為外氣 ，人員，物品機具具，抽煙等 －有門窗開口可行自然通風。
		－垂直面測點分佈	－檢討在非密閉正常使用的室內空間，變換不同使用設定狀態下其室內垂直面濃度分佈之差異	
	3．瞬間量測與連續量測比較	－瞬間量測與連續量測同步檢測	－瞬間量測平均值與連續量測平均值之誤差 －量測時間內其濃度變化之檢討。 －兩者在量測法優缺點之初步探討。	

圖五 台南林宅（案例A）室內測點平面圖

圖六 台南林宅室內空氣品質量測之 CO_{2} 濃度歷時變動分析

流通而降低 CO_{2} 濃度有絕對性影響。
由圖七顯示出客廳，臥室與陽台的 CO 濃度平均值相差很小，變動趨勢也趨於一致由於居住者並沒有吸煙的習慣，廚房產生的油煙與各測點之間的隔絕性亦尚良好，顯示出室內未具增加 CO 污染源之特殊條件時，室內 CO 濃度乃受到外氣 CO 濃度的變動影響。另由圖八可顯示出客廳，臥室，陽台的浮游粉塵濃度變動趨勢大略相近，變動輻度也頗激烈，由變動趨勢顯示，室內客廳，臥室之粉塵濃度受外氣變動影響甚大。

經由上述實測分析後，可得知運用自動化量測與記錄，能獲得室內空間長時間的連續動態變動的空氣污染濃度量測資料與有效分析，而掌握室內空氣品質實態，因此，可確認本研究之自動連續量測法在居住空間使用後室內空氣品質量測診斷工作上，具有其有效性。

圖七 台南林宅室內空氣品質量測之CO濃度歷時變動分析

圖八 台南林宅室內空氣品質量 測之粉塵濃度歷時變動分析

三，台灣地區室内空氣品質綜合評估診斷

（一）測定案例特性分析

為縢解台灣地區集合住宅使用後室內空氣品質一般水準及其特性，本研究分別選擇位於台北，台南，高雄之高層，中層與低層電梯公寓與樓梯公寓進行調查測試診斷，由表四中可了解本研究選擇之測試案例特性之分佈狀況。案例A，B，C，D，G位於都市核心地區，案例 E，F位於都會郊區 ；其中案例B雖位於市區，但周圍為學校，擁有較多的綠地。各案測點分如圖五與圖九～圖十四所示。

表四 測試案例基本條件

		案例A	案例B	案例C	案例D	案例E	案例F	案例G
	點	台南	台南	台南	高雄	台北	台北	台南
屋	齗	15年	6年	10年	3年	11年	11年	12年
建築型態		7層電梯公寓	10層電梯公寓	12層電梯公寓	13層電梯公寓	6層電梯公寓	6層電梯公寓	4層樓梯公寓
主要構造		R．C柱梁構造	R．C 柱梁構造	R．C柱梁構造	R．C柱梁構造	R．C柱梁構造	R．C柱梁構造	R．C柱梁構造
空間種類		$\begin{aligned} & \text { 二房, 二廳, } \\ & \text { 一套半衛浴 } \end{aligned}$	三房，二樬， 二套衛浴	三房，二廳， 一套衛浴	三房，二廳， 二套衛浴	三房，二廳， 一套衛浴	四房，二廳，二套衛浴	$\begin{aligned} & \text { 三房, 二廳, } \\ & \text { 一套衛浴 } \end{aligned}$
人口結構		年輕夫婦二人	夫婦出國研究出租房客二人	出租建築系學生三人	年輙夫婦二人祖母小孩各一	退休夫婦二人	退休夫婦二人	年輕夫婦二人
面臨道路寬		8 m	20 m	30 m	30 m	5 m	5 m	15 m
量測樓層		二F	三F	五F	十三F	－F	三F	四F
量間 測面 空積	客廳	$21.62 \mathrm{~m}^{2}$	$45.73 \mathrm{~m}^{2}$	$22.39 \mathrm{~m}^{2}$	$49.65 \mathrm{~m}^{2}$	$55.84 \mathrm{~m}^{2}$	$48.26 \mathrm{~m}^{2}$	$30.28 \mathrm{~m}^{2}$
	臥室	$16.96 \mathrm{~m}^{2}$	$11.32 \mathrm{~m}^{2}$	$9.45 \mathrm{~m}^{2}$	$16.68 \mathrm{~m}^{2}$	$24.85 \mathrm{~m}^{2}$	$20.91 \mathrm{~m}^{2}$	$13.21 \mathrm{~m}^{2}$
量間 測容 空積	客廳	$57.30 \mathrm{~m}^{3}$	$134.90 \mathrm{~m}^{3}$	$59.33 \mathrm{~m}^{3}$	$131.52 \mathrm{~m}^{3}$	$148.21 \mathrm{~m}^{3}$	$123.89 \mathrm{~m}^{3}$	$71.75 \mathrm{~m}^{3}$
	臥室	$44.94 \mathrm{~m}^{3}$	$33.39 \mathrm{~m}^{3}$	$25.04 \mathrm{~m}^{3}$	$44.20 \mathrm{~m}^{3}$	$65.72 \mathrm{~m}^{3}$	$55.41 \mathrm{~m}^{3}$	$30.80 \mathrm{~m}^{3}$
測口 點面 開積	客㻿	$10.3 \mathrm{~m}^{2}$	$13.26 \mathrm{~m}^{2}$	$6.20 \mathrm{~m}^{2}$	$7.77 \mathrm{~m}^{2}$	$17.04 \mathrm{~m}^{2}$	$21.21 \mathrm{~m}^{2}$	$5.54 \mathrm{~m}^{2}$
	臥室	$5.21 \mathrm{~m}^{2}$	$5.46 \mathrm{~m}^{2}$	$1.08 \mathrm{~m}^{2}$	$4.31 \mathrm{~m}^{2}$	$7.14 \mathrm{~m}^{2}$	$7.14 \mathrm{~m}^{2}$	$2.25 \mathrm{~m}^{2}$
換氣手法		自然通風換氣						
室內裝修		地坪：貼磁磚牆面：貼璧紙天花：水泥漆	地坪：貼磁磚 牆面：水泥漆 天花：水泥漆	地坪：貼磁磚 牆面：水泥漆 天花：水泥漆	地坪：貼磁磚 唊面：水泥漆 天花：水泥漆	地坪：櫸木板 牆面：水泥漆 天花：水泥漆	地坪：㩙木板 牆面：水泥漆 天花：水泥漆	地坪：大理石 牆面：水泥漆 天花：水泥漆

註：1．客廳面積與容積含餐廳，走道等連通空間
2．案例A臥室夏天開冷氣空調

大部份案例為10年至15年層齡之RC柱樑構造磚隔間建築物。案例B，D，G之廚房採開放式設計，各案空調方式皆為採自然通風換氣手法。案例A，E，F已完成春，夏，秋，冬四個節氣的追蹤測試，總計共十九個測次，做為本研究綜合解析之案例母群。測試項目除直接影響室內空氣品質之二氧化碳，一氧化碳與浮游粉塵等三項因子外，另行輔助測試乾球溫度，相對濕度，氣流，熱輻射等項測值做為交叉輔證評估分析之參酌數據。

（二）台灣地區住宅室內空氣品質一般水準

本研究測點選擇為室內之客廳與臥室，室外則以陽台測值做為評估外氣狀況之依據。經

圖九 案例B平面圖與測點位置

圖十一 案例D平面圖與測點位置

圖十三 案例E平面圖與測點位置

圖十 案例C平面圖與測點位置

圖十二 案例F平面圖與測點位置

圖十四 案例G平面圖與測點位置

十九個測次，五十七個測點之測試診斷後，分別統計客廳，臥室，陽台等三個測點之二氧化碳 $\left(\mathrm{CO}_{2}\right)$ ，一氧化碳 (CO) ，浮游粉塵（PM10）濃度值分佈如表五所示。

其中由客廳與臥室之空氣品質分佈狀況比較可知，臥室室內空氣品質之 CO 平均濃度亦受

表五 測試案例測定值分佈狀況分析

\begin{tabular}{|c|c|c|c|}
\hline \& \(\mathrm{CO}_{2}\) 濃度分佈 \& CO 濃度分佈 \& PM10濃度分佈 \\
\hline \begin{tabular}{l}
客 \\
廳
\end{tabular} \& \& \& \\
\hline 臨

室 \& \& \&

\hline 陽

台 \& \& \&

\hline 説

明 \& \begin{tabular}{l}
外氣 CO_{2} 亦呈常態分佈 ，範圍在為 $350 \sim 410 \mathrm{ppm}$ 間 ，平均值為 385 ppm ，標準差為 15 ppm 。

客廳 CO_{2} 呈常態分佈，平均值為 457 ppm ，較外氣平均濃度高約80ppm，標準差為43ppm。

臥房 CO_{2} 有少數偏高情形。將離散度較高部份抽離可推導出近似常態分佈趨勢，平均值為 555 ppm ，標準差為 173 ppm 。

 \&

外氣CO 分佈在 $0.5 \sim 2.5$ ppm ，呈常態分佈狀態，平均值為 1.42 ppm ，標準差為 0.54 ppm 。

客廳CO部份出現4ppm以上之濃度，由於外氣濃度最大值為 2.5 ppm ，故為室內自生之污染。

臥房 CO 有少數偏高情形。將離散度較高部份抽離 ，可求出近似常態分佈趨勢 ，平均值為 1.68 ppm ，標準差為 1.07 ppm 。

 \&

外氣PM10呈非常態分佈 ；平均值為 $0.131 \mathrm{mg} / \mathrm{m}^{3}$ ，標準差為 $0.092 \mathrm{mg} / \mathrm{m}^{3}$ 。

客廳PM10呈非常態分佈 ，在 $0.02 \sim 0.15 \mathrm{mg} / \mathrm{m}^{3}$ 間，與外氣分佈狀況相似。

臥房PM10有少數偏高情形。將離散度較高部份抽離可推導出近似常態分佈趨勢，平均值為 $0.131 \mathrm{mg} / \mathrm{m}^{3}$ ，標準差為 $0.092 \mathrm{mg} / \mathrm{m}^{3}$ 。
\end{tabular}

\hline
\end{tabular}

到廚具或熱水器的影響，但因其私密性較高，受影響程度較客廳為低，其室內空氣品質穩定性亦較高。另外，臥室之 $\mathrm{CO}_{2}, ~ \mathrm{CO}$ 與 PM10濃度大部份集中，少數偏離的分佈狀況，呈非常態性分佈，若將離散度較高之部份測值抽離，可發現三者都有呈常態分佈之趨勢（註一）。

另由各案例 CO_{2} 濃度之空間別數值分佈比較中，如圖十五所示。可膫解臥室之 CO_{2} 濃度高於客廳 98 ppm ，更高於陽台之平均測值 170 ppm ，顯示臥室受私密性需求影響，其氣密性使用行為造成 CO_{2} 濃度居高不下，而室內各測值均高於室外甚多，更顯示 CO_{2} 濃度發生源於室內，可作為室內空氣污染源之評估指標。

由圖十六可瞭解 CO 濃度之空間別數值分佈狀況比較，臥室與客廳之 CO 濃度分佈狀況與平均數值相差不大。而室內之 CO 濃度相較於室外最高相差 1.5 ppm 。亦顯示室內之燃燒器具或

圖十五 客廳，臥室與陽台 CO_{2} 濃度分佈比較圖

圖十六 客廳，臥室與陽台CO濃度分佈比較圖

吸煙行為易使 CO 濃度上昇，而且其蓄積於室內不易逸去，該行為使用發生機率較高之客廳測值亦略高於臥室。

由圖十七分佈曲線可了解各空間別之浮游粉塵測值相當一致，平均測值約為 $0.131 / \mathrm{m}^{3}$ ，並有部份測例超過 $0.15 \mathrm{mg} / \mathrm{m}^{3}$ 評估基準，顯示室內空間之浮游粉塵量甚為可觀，應尋求改善之道。

（三）測定值與國際基準之比較

許多國家對外氣環境都訂有管制基準，但對室內空氣品質之管制則不一定有法令及基準值來規範。目前我國臺灣地區有關室內空氣品質的規定，均是指工廠等產業現場之勞工安全保護，對於一般集合住宅，辦公室等室內人員密集的場所，則尚未在建築法規，衛生法規，或環保法規中規範。故建築物室內空氣品質不良時，相關主管單位面臨無法令可管制或告發來促使業者改善，以保障室內人員健康的基本權益，以及確保生活品質。由表六各國室內空氣品質管制基準與管制法之比較中可知，日本建築基準法，建物管理法以及美國冷凍空調協會換氣基準中，對於污染物（CO， CO_{2} ，PM10）都訂定其容許基準濃度之規定來管制與維護室內空氣品質。政府相關主管單位有必要研擬符合台灣地區本土化的室內空氣品質基準。

綜合評估本研究七個測例，十九個測次，五十七個測點之 $\mathrm{CO}_{2}, ~ \mathrm{CO}, ~ \mathrm{PM} 10$ 平均濃度值，將之和國際評估基準與生理健康反應值相較，建立綜合評估總表如表七所示。由 CO_{2} 濃度的 24小時平均值而言，案例A於春，秋，冬季均超過生理健康值標準，而其他各案則於局部區段時間內均有超過標準之時段，對人體健康產生不良反應。由CO濃度的24小時平均值而言，案例 A於夏季偏高，其餘測值則遠低於評估指標。由PM10濃度的24小時平均值而言，各案例之測值均偏高，案例D，G之測值均超過基準值而不合格，顯示室內測值隨室外測值同步移動，部份案例之室內測值甚至高於室外測值甚多，值得重視並研擬改善對策。

圖十七 客犘，臥室與陽台PM10濃度分佈比較圖

表六 各國室内空氣品質管制基準與管制法之比較（註二）

國 別	一氧化碳 （ppm）	二氧化碳 （ppm）	浮游粉塵 $\left(\mathrm{mg} / \mathrm{m}^{3}\right)$	管制法令
中華民國	無	無	無	無
$\begin{aligned} & \text { 日 } \\ & \text { 本 } \end{aligned}$	10ppm 時平均值	1000 ppm	$0.15 \mathrm{mg} / \mathrm{m}^{3}$	建築基準法施行令建物管理法施行令
美 國	9ppm 時平均值	1000 ppm	$0.15 \mathrm{mg} / \mathrm{m}^{3}$ 24時平均值	ASHRAE 62－89通風換氣基準
加 拿 大	11ppm日平均值 25 ppm 時平均值	3500 ppm時平均值	$0.04 \mathrm{mg} / \mathrm{m}^{3}$ 建議值 $0.1 \mathrm{mg} / \mathrm{m}^{3}$ 時平均	
$\begin{aligned} & \text { 荷 } \\ & \text { 蘭 } \end{aligned}$	9 ppm 時平均值 35 ppm 時平均值		$\begin{aligned} & 0.14 \mathrm{mg} / \mathrm{m}^{3} \\ & \text { (PM10) 日平均值 } \end{aligned}$	

（四）季節變化之影響

1．春季各案例測值比較
因各測試案例均完成春季測試工作，本研擬以春季測值做為與國外基準值比較室內空氣品質之依據。如圖十八所示，各測試案例之二氧化碳濃度之二十四小時平均值以臥室最高，客廳次之，室外陽台較低，室內各測點的平均值均在美，日基準值 1000 ppm 以下。

如圖十九所示，各測試案例之一氧化碳濃度二十四小時平均值均不高，介於 1 ppm 與 3 ppm 之間，較諸日本建築管理法基準值 10 ppm 與美國ASHRAE換氣基準 9 ppm 為低。外氣測值亦較我國環境基準 9 ppm為低。

如圖二十所示，各測試案例之浮游粉塵濃度二十四小時平均值與國内外基準比較，室外陽台測點僅案例B，E，F之平均值末超出我國環境基準 $0.125 \mathrm{mg} / \mathrm{m}^{3}$ 。室內的客廳與卧室測點方面，則有案例D，G之平均濃度在美，日室內基準值 $0.15 \mathrm{mg} / \mathrm{m}^{3}$ 以上。
2．不同節氣測例之歷時變動比較
案例 $\mathrm{A}, ~ \mathrm{E}, ~ \mathrm{~F}$ 完成四季追蹤測試，測值如表八所列，為了解不同節氣對室內空氣品質的影響，本研究特別取各測例之臥室 CO_{2} 濃度測值進行各季歷時變動狀況分析。其中案例 E 與案例 F 之四季室內測定值之歷時變動不大，其室內平均濃度值均低於美，日兩國之基準值。而案例 A 則於冬季的臥室測值之平均值超出美，日基準。案例A如圖二十一所示於春，秋，冬季就寝時段之 CO_{2} 濃度有急劇升高的趨勢，由污染物質量平衡原理，可知當室內空間氣密性甚高時，室内之 CO_{2} 污染物發生量大於排出量，經積累後使 CO_{2} 濃度高出容許基準值甚

表七 本研究測定值綜合評估總表

			O		M10		O_{2}		
		平均值 ppm	與基準值比較語價（＊1）	平均值 $\mathrm{mg} / \mathrm{m}^{3}$	與基準值比較評價（＊2）	平均值 ppm	與基準值比較評價（＊3）	評估等級	
案例A									
春 室內	$\begin{aligned} & \text { 客傻 } \\ & \text { 臥室 } \end{aligned}$	$\begin{aligned} & 2.47 \\ & 2.7 \end{aligned}$		$\begin{aligned} & 0.128 \\ & 0.103 \end{aligned}$		$\begin{aligned} & 444 \\ & 629 \end{aligned}$			
室外		2.48		0.161	不合格	407		不合格	
夏 室內	$\begin{aligned} & \text { 客菛 } \\ & \text { 臥室 } \end{aligned}$	5.42		0.033		441			
		5.49		0.088		577			
秋 室外		1.36		0.132		378			
	客弱臥室	1.36		0.124		512			
		1.63		0.092		408			
$\begin{array}{ll} & \text { 室外 } \\ \text { 冬 } \\ \text { 室内 } \end{array}$	客聽臥室	1.22		0.055		842			
冬 室内		2.28 2.49		0.051 0.051		553 1156	不合格	不合格	
雨 室唉内		1.59		0.078		402			
		3.74		0.085		461			
室外		1.74 1.01		0.089 0.044		498 373			
案例B									
春 室內	客魔	1.42		0.117		405			
	臥室	1.33		0.077		568			
室外		1.11		0.108		376			
案例C									
春 室內	客廳	1.83		0.133		447			
		2		0.127		491			
室外		2.16		0.165	不合格	381		不合格	
案例D									
春 室內		2.9		0.197	不合格	459		不合格	
室外		1.41		$\begin{aligned} & 0.199 \\ & 0.232 \end{aligned}$	不合格	$\begin{aligned} & 507 \\ & 408 \end{aligned}$		不合格不合格	
案例E									
	臥室	1.33		0.033		571			
室外		1.16		0.031		387			
夏 室内		1.33		0.032		516			
		1.55		0.076		474			
室外		1.48		0.075		405			
秋 室內	$\begin{aligned} & \text { 客䁤 } \\ & \text { 臤至 } \end{aligned}$	1.41		0.051		464			
		1.31		0.051		437			
室外		2.09		0.055		392			
冬 室內		1.15		0.045		446			
		1.39		0.018		464			
雨 室外		1.2		0.051		378			
雨 室內	$\begin{aligned} & \text { 客廊 } \\ & \text { 臥至 } \end{aligned}$	1.33		0.032		406			
室处		1.11		0.045		415			
室外		1.36		0.033		359			
案例F									
春 室內	客魔	1.66		0.03		466			
室外	挋室	1.92		0.024		463			
夏 室內		2.08		0.028		382			
	客橹臥室	1.85		0.032		415			
室外		0.65		0.042		447			
秋 室外		0.59		0.029		386			
	$\begin{aligned} & \text { 客魔 } \\ & \text { 臤室 } \end{aligned}$	1.1		0.042		498			
冬 室内		1.3		0.04		374			
	客廳 臥室	2.07		0.022		424			
雨 $\begin{gathered}\text { 室外 } \\ \text { 至內 }\end{gathered}$		1.07		0.053		498			
	客廳臥室	1.06		0.019		396			
		1.62		0.032		446			
		0.84		0.042		502			
室外		0.61		0.029		370			
案例G									
春 室內	$\begin{aligned} & \text { 各廳 } \\ & \text { 臥至 } \end{aligned}$	1.62		0.318	不合格	525		不合格	
		0.84		0.318	不合格	533		不合格	
室外		0.61		0.245	不合格	370		不合格	

[^1]

圖十几 春季各案例 CO_{2} 測定結果與基準比較

圖十九 春季各案例CO測定結果與基準比較

圖二十 春季各案例浮游粉塵測定結果與基準比較

表八 不同季節測定值比較

測定 項目	測定 地點		測定濃度平均值			
			春季	夏季	秋季	冬季
$\begin{gathered} \mathrm{CO} \\ (\mathrm{ppm}) \end{gathered}$	案例A	戶外 客廳 臥室	$\begin{aligned} & 2.48 \\ & 2.47 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 1.36 \\ & 5.42 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 1.22 \\ & 1.36 \\ & 1.63 \end{aligned}$	$\begin{aligned} & 1.59 \\ & 2.28 \\ & 2.49 \end{aligned}$
	案例E	戶外 客廳 臥室	$\begin{aligned} & 1.16 \\ & 1.21 \\ & 1.33 \end{aligned}$	$\begin{aligned} & 1.48 \\ & 1.33 \\ & 1.55 \end{aligned}$	$\begin{aligned} & 2.09 \\ & 1.41 \\ & 1.31 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.15 \\ & 1.39 \end{aligned}$
	案例F	戶外 客廳 臥室	$\begin{aligned} & 2.08 \\ & 1.66 \\ & 1.92 \end{aligned}$	$\begin{aligned} & 0.59 \\ & 1.85 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.52 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 2.07 \\ & 1.07 \end{aligned}$
$\begin{gathered} \mathrm{CO}_{2} \\ (\mathrm{ppm}) \end{gathered}$	案例A	戶外 客廳 臥室	$\begin{aligned} & 407 \\ & 444 \\ & 629 \end{aligned}$	$\begin{aligned} & 378 \\ & 441 \\ & 577 \end{aligned}$	$\begin{aligned} & 408 \\ & 512 \\ & 842 \end{aligned}$	$\begin{aligned} & 402 \\ & 553 \\ & 1156 \end{aligned}$
	案例E	戶外 客廳 臥室	$\begin{aligned} & 387 \\ & 437 \\ & 571 \end{aligned}$	$\begin{aligned} & 405 \\ & 516 \\ & 474 \end{aligned}$	$\begin{aligned} & 392 \\ & 464 \\ & 437 \end{aligned}$	$\begin{aligned} & 378 \\ & 464 \\ & 446 \end{aligned}$
	案例F	戶外 客廳 臥室	$\begin{aligned} & 382 \\ & 466 \\ & 463 \end{aligned}$	$\begin{aligned} & 386 \\ & 415 \\ & 447 \end{aligned}$	$\begin{aligned} & 374 \\ & 395 \\ & 498 \end{aligned}$	$\begin{aligned} & 396 \\ & 424 \\ & 498 \end{aligned}$
$\begin{gathered} \text { PM10 } \\ \left(\mathrm{mg} / \mathrm{m}^{3}\right) \end{gathered}$	案例A	戶外 客廳 臥室	$\begin{aligned} & 0.161 \\ & 0.128 \\ & 0.103 \end{aligned}$	$\begin{aligned} & 0.133 \\ & 0.033 \\ & 0.088 \end{aligned}$	$\begin{aligned} & 0.055 \\ & 0.124 \\ & 0.092 \end{aligned}$	$\begin{aligned} & 0.078 \\ & 0.051 \\ & 0.051 \end{aligned}$
		戶外客廳臥室	$\begin{aligned} & 0.031 \\ & 0.026 \\ & 0.033 \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.033 \\ & 0.076 \end{aligned}$	$\begin{aligned} & 0.055 \\ & 0.051 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.051 \\ & 0.045 \\ & 0.018 \end{aligned}$
	案例 F	戶外 客廳 臥室	$\begin{aligned} & 0.028 \\ & 0.03 \\ & 0.024 \end{aligned}$	$\begin{aligned} & 0.029 \\ & 0.032 \\ & 0.042 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.03 \\ & 0.042 \end{aligned}$	$\begin{aligned} & 0.019 \\ & 0.022 \\ & 0.053 \end{aligned}$

圖二十一 案例 A 臥室 CO_{2} 濃度各季歷時變動比較圖

多。夏季之 CO_{2} 濃度於凌晨睡眠時段受空調系統換氣影響，可維繫在約 700 ppm 左右；秋季之 CO_{2} 濃度雖亦受空調系統換氣影響，而於上午六時關閉空調系統時， CO_{2} 濃度值在氣密環境下陡然上昇至 1500 ppm ；直至上午七時開啟門窗後， CO_{2} 濃度值下降至 800 ppm 。由此可證不同季節所產生之居住行為對氣密程度與室內 CO_{2} 濃度值有絕對性影響。

案例 E 與案例 F 位於台北都會區之郊區，室外空氣清新且景觀優美，通風性良好。在圖二十二與圖二十三之歷時變動曲線可了解，適當之通風處理可以將室內 CO_{2} 濃度值控制在一定範圍之內。以案例 F 之測值曲線可了解受到室內人員返家影響，下午六時之 CO_{2} 濃度自 500 ppm 陡然昇高至 900 ppm ，但良好的通風狀況可將 CO_{2} 濃度值下降而致曲線產生鋸齒狀變動，並將 CO_{2} 濃度值控制在 500 ppm 與 800 ppm 之間，減低對人體健康之危害。

圖ニ十二 案例E臥室 CO_{2} 濃度各季歷時曫動比較圖

圖ニ十三 案例 F 臥室 CO_{2} 濃度各季歷時變動比較圖

由上述針對同測例，同測點之不同節氣比較中，可知居住行為模式與室內外通風換氣，人體溫洷舒適感覺有交互影響之互動關係。因此，在非氣密之空間條件下，測例之環境區位條件影響室內空氣品質程度較為明顯；在氣密之空調控制條件下，適當的機械換氣有助於室內空氣品質控制在某一範圍之內。

（五）居住空間室內空氣品質影響因子分析

外氣污染物與居住空間室內活動所產生之污染物均可影響室內空氣品質，本研究在居住空間使用者正常生活狀態下進行室內空氣品質測試，因無法控制境界條件為單一因子，因此其影響因子與室內空氣品質間的相關性探討，為其相互間相關性之高低程度，而非其是否相關。

本研究以春季各案例測值中之客廳與臥室兩測點，以表七所列室內空氣污染物濃度，外氣污染物濃度與表四所列建物屋齡，面前道路寬度，樓層數，室面積，室容積與窗面積等七項影響因子，迴歸分析其相關性，相關係數 $\left(\mathrm{R}^{2}\right)$ 如表九所示。 CO_{2} 濃度方面與各項影響因子之相關性甚低，僅客廳與窗面積，室容積之相關性稍高，臥室則與樓層高度相關性較高。CO濃度方面，客廳與外氣，樓層高度有較強之相關性，臥室則與外氣之相關性最高，其次為樓層高度，其他影響因子之相關性較低。PM10濃度方面，客廳與臥室之相關性次序約略相等，依序分別為外氣，道路寬度，窗面積，樓層高度，室容積，室面積與屋齡。
1．室內外空間別分析
由實測案例24小時平均值之室內與室外空氣環境相關係數分析，如表十所示。其中 CO_{2}濃度方面如圖二十五所示，室內外濃度值相關係數為 0.0145 ，無甚相關性；CO濃度方面如圖二十六所示，室內外濃度值相關係數為0．2917，相關性低；PM10濃度方面如圖二十七所示，室內外濃度值相關係數為0．8374，相關性最高。將室內外污染物濃度值相關係數繪製成

表九 室內空氣品質與影響因子迴歸分析相關係數 $\left(R^{2}\right)$

		外氣	路寬	屋齡	樓層	室面積	室容積	窗面積
CO	客廳	0.6	0.39	0.07	0.55	0.06	0.07	0.20
	臥室	0.61	0.04	0.20	0.01	0.01	0.01	0.01
CO_{2}	客廳	0.04	0.07	0.08	0.03	0.06	0.15	0.22
	臥室	0.08	0.11	0.14	0.17	0.01	0.01	0.08
浮游粉塵	客廳	0.86	0.64	0.07	0.41	0.19	0.28	0.52
	臥室	0.83	0.55	0.07	0.39	0.24	0.34	0.51

表十 室內物理環境因子 $\left(\mathrm{CO}_{2}, ~ \mathrm{CO}, ~ \mathrm{PM} 10\right)$ 與室外環境相關係數分析

因子	迴歸方程方式	$R_{r q}$	R
CO_{2}	$\mathrm{Y}=0.5014 \mathrm{X}+310.396$	0.0145	0.1203
CO	$\mathrm{Y}=0.51498 \mathrm{X}+0.9918$	0.2917	0.5401
PM 10	$\mathrm{Y}=1.0359 \mathrm{X}-0.0035$	0.8374	0.9151

圖ニ十五 室內 CO_{2} 濃度與外氣環境相關性比較

雷達圖，如圖二十八所示，可了解室內PM10濃度，CO濃度與外氣濃度相關性較大。

複判定係數	0.6395
簡單判定係數	0.4089
調整後判定係數	0.2907
標準誤	0.5539
觀察値個數	7.00

圖二十六 室內CO濃度與外氣環境相關性比較

圖ニ十七 室內PM10濃度與外氣環境相關性比較

圖二十几 各測例室內，外物理環境因子 $\left(\mathrm{CO}_{2}, ~ \mathrm{CO}, ~ \mathrm{PM} 10\right)$ 相關性雷達圖

2．室內各空間別分析：
至於室內空間別之間的空氣污染相關性方面，由圖二十九，三十，三十一中可了解客廳與臥室的 CO_{2} 濃度值， CO 濃度值相關性不大，PM10濃度值則相關性最大。顯示室內各空間污染物質相互傳播率不高，個別空間之污染發生行為對該空間影響最大。如前所述，室內外PM10濃度相關性高，致室內各空間濃度值相近，相關性高。

四，結論與建議

本研究乃有鑑於居住空間室內空氣品質已隨外在環境惡化與生活環境污染源增多而趨於惡化之事實，試圖建立之 $\mathrm{CO}_{2}, ~ \mathrm{CO}, ~ \mathrm{PM10}$ 等三項污染物質為評估指標之量測診斷系統，定量化解析五十七個測點之居住空間案例，以了解我國居住空間室內空氣品質現況與課題，以做為未來研擬改善對策之具體準據。本研究獲致以下的結論：

複判定係數	0.5401
簡單判定係數	0.2917
調整後判定係數	0.1500
標集誤	0.5699
觀察値個數	7

圖ニ十九 客廳與臥室CO濃度相關性比較

複判定係數	0.1203
簡單判定係數	0.0145
調整後判定係數	-0.1826
標集俁	56.6423
觀察値個數	7

圖三十 客廳與臥室 CO_{2} 濃度相關性比較

複判定係數	0.9151
簡單判定係數	0.8374
調整後判定係數	0.8049
標準誤	0.0425
觀察値個數	7

圖三十一 客魔與卧室PM10濃度相關性比較

（一）室內空氣污染源種類繁多，本研究依美國冷涷空調協會對室內空間換氣基準，與日本建築基準法，建物管理法之相關規定，選擇 $\mathrm{CO}, ~ \mathrm{CO}, ~ \mathrm{PM} 10$ 為室內空氣品質評估對象。本研究所採用之室內空氣品質使用後評估自動連續量測法經實驗室與現場檢驗，能掌握室內空氣品質實態，並具有效性。
（二）影響居住空間室內空氣品質因子中， PM 10 與 CO 受外氣影響最大， CO_{2} 與室外環境，室內空間環境條件相關性低，受室內氣密環境影響大，可做為室內空氣污染評估指標。室內各空間別有互傳播空氣污染物質相關性不大，個別空間之污染發生行為對該空間影響最大。 （三）台灣地區目前並無室內空氣品質管制基準與管制法令，主要空氣污染源中以PM10平均測值或瀕臨超過國際基準值之案例最多， CO_{2} 測值於局部時段亦有高出國際基準值現象，此課題不僅應予重視，更應予以規範管制。
（四）由季節變動之歷時分析中可了解，不同節氣時之居住行為模式對 CO_{2} 濃度有絕對性影響。在非氣密之空間條件下，測例之環境區位條件影響室內空氣品質程度較為明顯：在氣密之空間條件下，測例之 CO_{2} 濃度值超過國際基準值甚多，其中尤以臥室之測值變化狀況較為嚴重，有必要針對臥室之容積與通風或空調換氣量進一步解析。
（五）為避免客觀量測過程影響空間使用者正常作息行為模式，本研究於檢測完畢後進行主觀使用行為調查，未來應將使用行為模式進行分段解析，以做為訂定室內空氣環境綜合評估指標之分項評估等級標準值之參考依據。

註 釋

註1：江哲銘（1993）PP．82。
註2：江哲銘（1993）PP．32。

參考文獻

彭定吉

1992 《集合住宅室內空氣品質 $\left(\mathrm{CO}_{2}\right.$ ， CO ，PM10）場量測方法之探討》碩士論文，國立成功大學。

江哲銘 林俊興
1990 《下世代住居空間物理環境之研究（第一期）（第二期）》台北：財團法人祐生研究基金會。

江哲銘 林俊興

1993 《下世代住居空間物理環境之研究（第四期）》台北：財團法人祐生研究基金會。

曾鵬樟

1993 〈台灣都會地區辦公建築物室內空氣品質的探討與展望〉《冷凍空調雜誌》2：49－ 62 。

扶亞民
1992 〈通風換氣對室內空調負荷及室內空氣品質之影響〉《冷凍空調雜誌》4：16－36。
松尾陽
1992 〈地球環境與建築〉《中日工程技術研討會專輯》。
牛頓雜誌
1992 〈開始溫暖了〉《牛頓雜誌》2：109－116。
陳東榮
1993 《住宅室內空氣品質 $\left(\mathrm{CO}_{2}, ~ \mathrm{CO}, ~ \mathrm{PM10}\right)$ 現場測定與評估檢討》碩士論文，國立成功大學。

日本建築學會

1988 《建築環境工學用教材 環境篇》東京。
1977 《建築設計資料集成 1－環境》東京：丸善株式會社。

山田由紀子
1970 《建築環境基準に關する研究》博士論文，日本東京大學。
健康で快適た住宅研究會
1991 《健康快適住宅宣言》東京：ケイブン出版株式會社。
小峰裕己
1991 〈集合住宅における二酸窒素による室内空氣污染の賽態調查〉《日本建築學會計畫系論文報告集》423：33－39。

藤井正一
1991 〈健康に住まら〉《快適な生活環境をつくる知惠》，東京：彰國社。

[^0]: ＊國立成功大學建築研究所副数授。
 ＊＊國立成功大學建築研究所博士班研究生。

[^1]: ＊1 室內 CO 濃度測定值超出國外基準值（9ppm）稱為「不合格」。
 ＊2 室内PM10濃度測定值超出國外基漼值 $\left(0.15 \mathrm{mg} / \mathrm{m}^{3}\right.$ ）稱為「不合格」。
 ＊3 室內 CO_{2} 濃度測定值超出國外基準值（ 1000 ppm ）稱為「不合格」。

