住宅選擇之程序性決策模式
 The Sequential Decision Models for Housing Choice

陳彦伸＊

Yen－Jong Chen

摘 要

家户對住宅的選擇可以視為一連串的決策過程，包括租買選擇，住宅型式，區位等選萚決策。本研究依巢式多項 Logit 模型架構建立住宅選擉模型，並透過缕包容值（inclusive value）係数之检定予推論住宅選擇之決策程序。本研究詳細説明了巢式多項 Logit 模型之理論基礎及模型架構，並以1980年美國之公用個體抽様資料（the Public Use Microdata Sample，PUMS）為基礎，選擇聖地牙哥（San Diego，CA）都會區為研究區進行赛證分析。研究結果發現，家户將租買選擇列為最優先的決策，其次決定住宅频型，包括住宅型式（透天或集合住宅），室内空間（如房間數），住宅區位（如市區或郊區）以及住宅品質（如建築物年龄，衐浴及廚房設備，空氣調節等），最後在各住宅颣型中挑選最適當之住宅單元。
（關鍵詞：住宅需求，租買選擇，Logit模型，包容值）

Abstract

\section*{ABSTRACT}

The process of housing choice could be a bundleof decision making including tenure choice，housing type choice，and location choice etc．This paper try to find empirical evidences to explain the decision process ：the simultaneous decision or the sequential decision．The model that applied to this study is the well－developed logit model in discrete choice theory．By testing the coefficient of inclusive value in the nested multinomial logit model（NMNL），we are able to answer what the decision structure of housing choice would be．The data we used in this study is the Public Used Microdata Sample（the PUMS）of San Diego metropolitan area from 1980 Census data．The final result is that the first prior decision made by household is the tenure choice and then followed by the＇housing type＇choice which is classified by four indexes：the housing structure type（single unit or multiple unit），the number ofrooms，the location（city or suburban），and the housing quality level．The last decision would be to select the housing unit from the given ＇housing type＇．

（Keywords：Housing Demand，Tenure Choice，Logit Model，Inclusive Value）

[^0]
一，前言

一般選擇住宅時會考慮幾個因素，包括房屋價格，住宅區位，房屋型態（透天或集合住宅）以及鄰里環境等因素。透過傳統競租理論所建立的房屋價格函數僅能解釋房價與其它因素之間的關係。但這些因素如何影響住戶的決策，則無法解釋。事實上家戶對住宅的選擇可以視為一連串的決策過程。各住戶就其所能掌握的資源，依其所得限制作最佳的決策（即選擇）。然而，吾人期望更進一步探討決策過程中的諸多盲點。例如，住戶選擇住宅時，其決策是否為程序性的過程？換句話説，住戶是先決定租買選擇再決定住宅型態？或是先決定住宅型態在決定租買選擇？抑或是其他的決策因素與決策程序？當然，也可能是非程序性的決策過程。本研究的重點即是嘗試以巢式多項 Logit 模型（The Nested Multinomial Logit Model）架構住宅選擇模型，並透過對包容值（inclusive value）係數之檢定予回答前述問題。巢式Logit模型以巢層結構解釋各巢層之間內部變異的關係，若上下巢層之間存在不同的內部變異時，即適用巢式Logit模型；若上下巢層之間內部變異相同時，則巢式Logit模型可以簡化成多項Logit模型。在實證分析時，巢式Logit模型及多項Logit模型皆可以用分析多方案指標之聯合選擇（joint choice with multidimensions）。唯巢式 Logit模型是為程序性選擇（sequential choice）之決策過程，而多項Logit模型則為同時性選擇 （simultaneous choice）。至於如何決定方案選擇是為程序性或是同時性，則可以透過各方案指標（巢層）之相對重要性予以判斷。而包容值（Inclusive Value）的係數正可以做為判斷的指標。

多項 Logit 模型及巢式多項 Logit模型，以個體消費選擇理論為基礎（McFadden，1973），目前已廣泛運用於運輸規劃之運具及區位選擇。而在住宅選擇方面之研究相對較少。 Quigley （1976），Rouwendal（1988）及 Waddell（1989）分別以匹茲堡（Pittsburgh，PN），荷蘭及達拉斯（Dallars， TX．，U．S．A．）之資料進行了住宅選擇之實証研究。其所面臨之共同問題是：如何劃分住宅子市場以決定替選方案？例如依住宅型態或依住宅區位將有不同的劃分方式；此外，如果不以住宅子市場決定替選方案，吾人亦可以將其他家戶選擇之住宅設定成為替選方案。然而不同之設定方式將定義出不同的方案集合。事實上，如何決定替選方案與住戶的決策程序有關。本研究對此問題亦將給予詳細説明。

本文之架構如下：第二節説明Logit模型之理論基礎，及本研究所設定之模型架構；第三節就住宅選擇過程中最主要之租買選擇決策的處理方式進行説明；第四節敘述本研究之資料來源及解釋模型之實証結果；最後説明本文結論。

二，Logit 模型的理論架構

不連續選擇理論（discrete choice theory）導源於隨機效用的概念，認為在理性的經濟選擇行為下，選擇者（如家戶 i ）必然選擇效用最大化的替選方案（如住宅 j ）。而替選方案的效用（以 $\mathrm{U}_{\mathrm{j}} \mathrm{i}$ 表示）可以分為兩個部份：（1）可衡量效用 $\left(\mathrm{V}_{\mathrm{j}}{ }^{\mathrm{i}}\right)$ ，代表替選方案可以被觀測的效用部分；以及（2）隨機效用 $\left(\varepsilon_{j}{ }^{i}\right)$ 代表不可觀測的效用。以數學式表示如下：

$$
\begin{equation*}
U_{j}{ }^{i}=V_{j}^{i}+\varepsilon_{j}{ }^{i} \tag{1}
\end{equation*}
$$

其中，隨機效用 $\left(\mathcal{E}_{\mathrm{j}}{ }^{\mathrm{i}}\right)$ 除了代表不可觀測的效用之外，尚包括了許多誤差來源，例如對可衡

量效用的衡量誤差，函數指定誤差，抽樣誤差以及變數選定誤差等。對隨機效用做不同的機率分配假設，可以得到不同的選擇模型，在不連續選擇理論中一般常用的機率分配假設為常態分配及Gumbel 分配。若假設 $\varepsilon_{\mathrm{j}} \mathrm{i}$ 呈常態分配，則可以推導出Probit 模型；若假設 $\varepsilon_{\mathrm{j}}^{\mathrm{j}}$ 呈相同且獨立之第一型態極端值分配（iid，type I extreme value distribution），即Gumbel 分配，則可以推導出 Logit模型（McFadden（1973，1981），Ben－Akiva and Lerman（1985））。由於 Probit 模型無法推導出簡化的計算式，因此不易計算其選擇機率，也因此使得 Probit模型在實証應用上受到限制。

McFadden（1978）對極端值分配（extreme value distribution）有明確定義（請參見本文附錄）。其第一型態極端值分配之累積分配函數（c．d．f．）為：

$$
\begin{equation*}
F(\varepsilon)=\exp (-\exp (-\delta(\varepsilon-\eta))), \delta>0 \tag{2}
\end{equation*}
$$

其平均數為 $(\eta+r / \delta)$ ，而變異數為 $\left(\sigma^{2}=\pi^{2} / 6 \delta^{2}\right)$ 。其中，r 為尤拉（Euler）係數，其值約為 $0.577 ; \pi$為圓周率，其值約為 3.14 ；而 η 為眾數（mode）；δ 稱為離散參數（dispersion parameter）或稱為異質係數（heterogeneity coefficient），其數值大小恰與變異數 σ^{2} 之大小相反。當 δ 值趨近極大值時，σ^{2}趨近於 0 ；反之當 δ 趨近於 0 時，σ^{2} 趨近於極大值。離散參數在巢式 Logit 模型中將可用以檢定包容值的係數是否合理，並可據以驗証模型的巢層結構。

家戶（ i ）選擇住宅 (j) 的機率（ $\mathrm{P}_{\mathrm{j}}{ }^{\mathrm{j}}$ ）取決於該住宅所帶給家戶的效用大小 $\left(\mathrm{U}_{\mathrm{j}}{ }^{\mathrm{i}}\right)$ 。當住宅的效用愈大時，該住宅被家戶選擇的機率就愈大。以數學式表示如下：

$$
\begin{align*}
& P_{j}^{i}=\operatorname{Prob}\left(U_{j}^{i}>U_{r}^{i}, \forall r \neq j, r, j \in J\right) \\
& =\operatorname{Prob}\left(V_{j}^{i}+\varepsilon_{j i}>V_{r}^{i}+\forall_{r}^{i}, r j, r, j\right) \\
& =\operatorname{Prob}\left(V_{j}^{i}-V_{r}^{i}>\varepsilon_{\mathrm{k}}^{\mathrm{i}-\varepsilon_{j}^{i}}, \forall r j, r, j \in J\right) \tag{3}
\end{align*}
$$

若假設（3）式中 $\varepsilon_{\kappa}{ }^{i}, ~ \varepsilon_{\kappa}{ }^{i}$ 呈相同且一致之第一型態極端值分配，則可以推導出多項 Logit 模型 （multinomial logit model，MNL），其數學式為 ：

$$
\begin{equation*}
P_{\mathrm{j}}^{\mathrm{i}}=\frac{\exp \left(\delta \mathrm{V}_{\mathrm{j}}^{\mathrm{i}}\right)}{\sum_{\mathrm{r} \in \mathrm{~J}} \exp \left(\delta \mathrm{~V}_{\mathrm{j}}^{\mathrm{j}}\right)} \tag{4}
\end{equation*}
$$

家戶（i）選擇住宅單元（j）之多項Logit模型可以以圖（一）顯示及選擇結構。

圖一 多項Logit模型選擇

由（4）式可以進一步推導多項Logit模型不相干替選方案獨立的特性（the property of independence of irrelevant alternatives，IIA）。如（5）式所示，j與k方案之相對選擇機率（Pji／pki）只與 j方案與k方案之屬性差異（Vji－Vki）有關，而與其它方案之屬性無關。

$$
\begin{align*}
& P_{j}^{i} / P_{k}^{i}=\exp \left(\delta V_{j}^{i}\right) / \exp \left(\delta V_{k}^{i}\right) \\
& \left.=\exp \left(\delta V_{j}^{i}-V_{k}^{i}\right)\right\} \ldots \ldots \tag{5}
\end{align*}
$$

此IIA特性在校估參數時是一項優點，但在實証研究上卻頗不合理。如著名的紅，藍公車的矛盾便是因IIA特性所產生的現象。改善IIA的方法中最常被使用者就是採用巢式 Logit 模型（the nested logit model，NMNL）。事實上，多項 Logit 模型是巢式 Logit 模型簡化後的特例（McFadden， 1978）。

巢式 Logit 模型假設選擇決策是有先後順序的過程。舉例而言，家戶在決定住宅選擇時，其決策程序可能是先決定住宅類型，再自該住宅類型內選擇特定住宅單元（housing unit）；也可能是先決定租買選擇（tenure choice），再決定住宅類型，最後再選擇特定住宅單元。前者屬於二巢層選擇結構，後者則屬於三巢層選擇結構。茲將其模型結構分別説明如下：

（－）二巢層住宅選擇

假設家戶（i）決定住宅選擇的程序是：先決定住宅類型（k），再決定住宅單元（j）\circ 其結構如圖（二）所示：

圖二 二巢層住宅選擇之決策結構

本研究將住宅型態（ k ）區分為 48 個子市場，分別是由下列指標交叉組合而成。（1）二類型之房屋型態：透天住宅及集合住宅；（2）二類型之住宅區位：市區及郊區；（3）四類型之臥室間數：1間臥室（含以下），2間臥室，3間臥室及4間以上臥室；以及（4）三類型之住宅品質：低品質，普通品質及高品質之住宅分類。所有住宅皆恰可以被歸納至其中一類。而家戶必須就此48類之住宅先行決定其住宅類型選擇；其次自該選擇之住宅類型中選擇某一特定之住宅單元。此時，家戶選擇住宅之效用函數可以被分解成如（6）式所示：

$$
\begin{equation*}
U_{j k}{ }^{i}=V_{k}{ }^{i}+V_{j}{ }^{i}+V_{j k}{ }^{i}+\varepsilon_{k}{ }^{i}+\varepsilon_{j k}{ }^{i} . \tag{6}
\end{equation*}
$$

其中， $\mathrm{V}_{\mathrm{k}}{ }^{\mathrm{i}}$ 代表上巢層各方案之效用，用以衡量房屋型態所帶給家戶之可衡量效用； $\mathrm{V}_{\mathrm{j}}{ }^{i}$ 及 $\mathrm{V}_{\mathrm{jk}}{ }^{\mathrm{i}}$表示下巢層各住宅單元所帶給家戶之可衡量效用。 $\varepsilon_{\mathrm{k}}{ }^{\mathrm{B}}$ 及 $\varepsilon_{\mathrm{jk}}{ }^{\text {i分別表示上，下巢層之隨機效用。若假 }}$設 $\delta_{\mathrm{k}}{ }^{i}$ 及 $\delta_{\mathrm{jk}}{ }^{i}$ 均為相同且獨立之第一型態極端值分配，而上巢層之離散參數為，下巢層為，則住宅類型及住宅單元之聯合選擇機率 $\left(\mathrm{P}_{\mathrm{jk}}{ }^{\mathrm{i}}\right.$ 可以計算如下：

$$
\begin{equation*}
P_{j k}{ }^{i}=p_{k}{ }^{i} * p_{j k}{ }^{i}{ }^{i} \tag{7}
\end{equation*}
$$

其中， $\mathrm{P}_{\mathrm{k}} \mathrm{i}$ 稱為選擇住宅類型之邊際機率（marginal probability），而 $\mathrm{P}_{\mathrm{j} / \mathrm{k}}{ }^{\mathrm{i}}$ 稱為選擇住宅單元之條件機率（conditional probability）。兩項機率之計算式分別為：

$$
\begin{align*}
& \mathrm{P}_{\mathrm{j} / \mathrm{k}}{ }^{\mathrm{i}}=\exp \left[\delta_{2}\left(\mathrm{~V}_{\mathrm{j}}^{\mathrm{i}}+\mathrm{V}_{\mathrm{jk}}{ }^{\mathrm{i}}\right)\right] / \exp \left(\mathrm{I}_{\mathrm{k}}{ }^{\mathrm{i}}\right) \ldots \tag{7.1}\\
& \mathrm{I}_{\mathrm{k}}^{\mathrm{i}}=\ln \left[\sum_{\mathrm{n} \in \mathrm{~A}_{\mathrm{k}}} \exp \left(\delta_{2}\left(\mathrm{~V}_{\mathrm{n}}{ }^{\mathrm{i}}+\mathrm{V}_{\mathrm{nk}}{ }^{\mathrm{i}}\right)\right)\right] . \tag{7.2}
\end{align*}
$$

而

$$
\begin{equation*}
\mathrm{P}_{\mathrm{k}}^{\mathrm{i}}=\frac{\exp \left[\delta_{2}\left(\mathrm{~V}_{\mathrm{k}}^{\mathrm{i}}+\left(\delta_{1} / \delta_{2}\right) \mathrm{I}_{\mathrm{k}}^{\mathrm{i}}\right]\right.}{\sum_{\mathrm{m}} \exp \left[\delta_{1} \mathrm{~V}_{\mathrm{m}}^{\mathrm{i}}+\left(\delta_{1} / \delta_{2}\right) \mathrm{I}_{\mathrm{m}}^{\mathrm{i}}\right]} \tag{7.3}
\end{equation*}
$$

（7．2）式所計算之 $\mathrm{I}_{\mathrm{k}}{ }^{i}$ 即為第k種住宅類型之包容值（inclusive value）。其中， A_{k} 代表第 k 種住宅類型內之住宅單元替選方案的集合。將（7．2）式代入（7．1）式即可看出下巢層內之住宅單元選擇皆為多項 Logi 模型。而由（7．3）式亦可明顯看出，上巢層之住宅類型選擇亦為多項 Logit 模型。其中包容值的係數為 $\left(\delta_{1} / \delta_{2}\right)$ ，而 δ_{1} 及 δ_{2} 分別表示上巢層（或稱第一巢層）及下巢層（或稱第二巢層）的離散參數（dispersion parameter）。而由Gumbel分配之變異數計算公式可以得知離散參數又恰與該巢層之效用函數中不可衡量部份 $\left(\varepsilon_{\mathrm{k}}{ }^{\mathrm{i}}\right.$ 及 $\varepsilon_{\mathrm{jk}}{ }^{\mathrm{i}}$ ） 變異數呈反向變動關係。一般合理的巢層結構假設是，上層巢的變異大於下巢層的變異。換言之，若假設住宅類型選擇的內部變異相對較大，而住宅單元選擇的內部變異相對較小，則家戶的決策程序是先選擇住宅類型，再就同一住宅類型內的住宅單元進行選擇。基於此一假設，則上下巢層的變異數必然有 $\sigma_{1}>\sigma_{2}$ 的關係，因而 $\delta_{1}<\delta_{2} \circ$ 因此包容值的係數 $\left(\delta_{1} / \delta_{2}\right)$ 必然介於 0 與 1 之間。因此，反向推論，吾人可以透過對包容值係數的檢定予推論住宅選擇之決策程序。若包容值的係數為1，則表示上，下巢層之變異一樣大。因此巢層 Logit 模型可以簡化成為多項 Logit 模型；意即，家戶在選擇住宅類型及住宅單元時並無程序上的差別，是為同時選擇決策。若包容值的係數為 0 ，則表示下巢層之變異遠小於上巢層之變異，相對之下幾乎可以忽略下巢層之內部變異；意即，下巢層（同一住宅類型）內之住宅單元彼此間具高度相似性。譬如住宅格局大小，建材及區位均相同之住宅單元。若包容值的係數大於1，則表示下巢層之變異數大於上巢層之變異數，因此可以推論上，下巢層的結構可能反置。

依此類推，在三（或更多）巢層之 logit模型結構中，包容值的係數可以用以推論相鄰上，下巢層之相對變異關係。例如以 $\delta_{1}, ~ \delta_{2}, ~ \delta_{3}$ 分別代表第一，二，三巢層之離散參數，則第二巢層之包容值係數，理論上是為 $\left(\delta_{2} / \delta_{3}\right)$ ；而第一巢層之包容值係數為 $\left(\delta_{1} / \delta_{2}\right) \circ$ 若巢層之結構正確，則各巢層之變異數大小關係應為 $\sigma_{1}>\sigma_{2}>\sigma_{3}{ }^{2}$ ，唐即 $0<\delta_{1}<\delta_{2}<\delta_{3}$ 。因此，$\left(\delta_{1} / \delta_{2}\right)$ 及 $\left(\delta_{2} / \delta_{3}\right)$ 皆介於 0 與 1之間。

Domencich 及 McFadden（1975）對包容值的經濟意義有深入的討論，指出包容值可以用以計算選擇者在該巢層選擇之期望最大效用（the expected maximun utility），以數學式表示如下：

$$
\begin{equation*}
\mathrm{E}\left[\operatorname{Max}_{\mathrm{j} \in \mathrm{Ax}}\left(V_{\mathrm{j}}{ }^{i}+\mathrm{V}_{\mathrm{jk}}{ }^{\mathrm{i}}+\varepsilon_{\mathrm{jk}}{ }^{\mathrm{i}}\right]\right]=\left(1 / \delta_{2}\right) \mathrm{I}_{\mathrm{k}}^{\mathrm{i}} \tag{8}
\end{equation*}
$$

而 Small 及 Rosen（1981）更明確指出，（8）式所計算之期望最大效用，實際上就是住宅消費市場以效用為單位所衡量之消費者剩餘（consumer surplus）。

（二）三巢層住宅選擇

若假設家戶選擇住宅的決策程序是先決定租買行為，再決定住宅類型，再其次決定住宅單元。其結構如圖（三）所示。此時，吾人可以寫出家戶選擇之效用函數為：

$$
\begin{equation*}
U_{j k t}{ }^{i}=V_{t}{ }^{i}+V_{k}{ }^{i}+V_{k t}{ }^{i}+V_{j}{ }^{i}+V_{j k t}{ }^{i}+\varepsilon_{t}{ }^{i}+\varepsilon_{k t}{ }^{i}+\varepsilon_{j k t}{ }^{i} . \tag{9}
\end{equation*}
$$

住宅單元選擇（ j in k ）
圖三 三巢層住宅選擇之決策結構
（9）式中，$\varepsilon_{\mathrm{t}}{ }^{i}, ~ \varepsilon_{\mathrm{kt}}{ }^{\mathrm{i}}, \varepsilon_{\mathrm{jkt}}{ }^{\mathrm{i}}{ }^{\text {i }}$ 分別代表第一巢層（租買選擇），第二巢層（住宅類型選擇）及第三巢層（住宅單元選擇）之效用函數中不可衡量部份，其離散參數分別為 $\delta_{1}, ~ \delta_{2}, ~ \delta_{3}$ 。依前述二巢層選擇之相同假設進行推論，家戶（ i ）選擇住宅之聯合選擇機率可以計算如下：

$$
\begin{equation*}
\mathrm{P}_{\mathrm{jkt}}{ }^{\mathrm{i}}=\mathrm{P}_{\mathrm{t}}^{\mathrm{i}} * \mathrm{P}_{\mathrm{k} / \mathrm{t}}{ }^{i} * \mathrm{P}_{\mathrm{j} / \mathrm{kt}}{ }^{\mathrm{i}} \tag{10}
\end{equation*}
$$

其中 $\mathrm{P}_{\mathrm{j} / \mathrm{kt}}$ i代表決定租買選擇及住宅分類選擇之後選擇住宅單元之條件機率，其計算式為：

$$
\begin{equation*}
\mathrm{P}_{\mathrm{j} / \mathrm{kt}}{ }^{\mathrm{i}}=\exp \left[\delta_{3}\left(\mathrm{~V}_{\mathrm{j}}^{\mathrm{i}}+\mathrm{V}_{\mathrm{jkt}}{ }^{i}\right)\right] / \exp \left(\mathrm{I}_{\mathrm{kt}}{ }^{\mathrm{i}}\right) . \tag{10.1}
\end{equation*}
$$

$I_{k t}{ }^{i}=\ln \left[\sum_{n} \exp \left(\delta_{3}\left(V_{n}{ }^{i}+V_{n k t}{ }^{i}\right)\right)\right]$
（10）式中， $\mathrm{P}_{\mathrm{k} / 4}$ i代表決定租買選擇之後選擇住宅類型之條件機率，其計算方式為：

$$
\begin{align*}
& P_{k / t}{ }^{i}=\exp \left[\delta_{2}\left(V_{k}{ }^{i}+V_{k t}{ }^{i}\right)+\left(\delta_{2} / \delta_{3}\right) I_{k t}{ }^{i}\right] / \exp \left(I_{t}{ }^{i}\right) \tag{10.3}\\
& I_{t}{ }^{i}=\ln \left[\sum_{m} \exp \left(\delta_{2}\left(V_{m}{ }^{i}+V_{m t}{ }^{i}\right)+\left(\delta_{2} / \delta_{3}\right) I_{m t}^{i}\right] . .\right. \tag{10.4}
\end{align*}
$$

（10）式中，Pti代表決定租買選擇之邊際條件，其計算式為：

$$
\begin{equation*}
\mathrm{P}^{\mathrm{i}}=\frac{\exp _{\mathrm{t}}\left[\delta_{1} \mathrm{~V}_{\mathrm{t}}^{\mathrm{i}}+\left(\delta_{1} / \delta_{2}\right) \mathrm{I}_{\mathrm{t}}^{\mathrm{i}}\right]}{\sum_{1=1}^{2} \exp \left[\delta_{1} \mathrm{~V}_{\mathrm{t}}^{\mathrm{i}}+\left(\delta_{1} / \delta_{2}\right) \mathrm{I}_{\mathrm{t}}^{\mathrm{i}}\right]} \tag{10.5}
\end{equation*}
$$

（10．2）式及（10．4）式所計算之 $I_{k t}{ }^{i}$ 及 $I_{t}{ }^{i}$ 分別代表第三巢層及第二巢層之包容值。如前述對二巢層 Logit模型之推論，若圖（二）之決策結構正確，則租買選擇之變異必然大於住宅類型選擇變異，而且同時大於住宅單元選擇之變異。所以包容值的係數 $\left(\delta_{2} / \delta_{3}\right)$ 及 $\left(\delta_{1} / \delta_{2}\right)$ 均必須介於 0 與 1 之間，才能反應合理之決策程序結構。

三，Logit 模型中處理租買選擇之方式

以 Logit 模式進行實証操作時，通常必需面臨幾個問題：（1）如何決定替選方案集合。以住宅選擇為例，可以將住宅市場劃分為若干個子市場做為替選方案集合，如 Quigley（1976）；亦可以從個別家戶之選擇住宅中隨機抽取若干個住宅單元做為替選方案集合，如 Lerman（1977）。無論採用何種方式皆不宜設定過多的替選方案，以免造成參數校估上的困擾。例如增加參數校估時間及運算資源，並降低模型之配合度（goodness－of－fit）。（2）如何設定決策程序。家戶之決策程序可以透過對包容值的檢定予以推論。（3）效用函數型態及解釋變數之指定。例如效用函數可能被指定為線型函數，或對數線型函數。而解釋變數則可能包含共同變數（generic variables），替選方案特定變數（alternative－specific variables）以及家戶之社會經濟屬性變數。（4）參數校估方式。對多項 Logit 模式而言，可以透過最大概似法（maximum likelihood approach）予校估參數。而對巢式 Logit 而言，一般採用階段式校估步驟：先以最大概似法校估下巢層之係數，並計算包容值，再代入上巢層進行第二階段之參數校估。由下而上依次校估各巢層係數直到最上巢層。然而，使用階段式校估巢式 Logit 的係數所得到的結果是有偏誤的估計值，而巢層愈多，其偏誤愈不易掌握。因此，理論上若採用階段式校估程序，則巢層不宜太多（Anas 及Chu，1984）。事實上，前述問題彼此間互有影響，除了參數校估的問題因為涉及較複雜之計算而較少被討論外，決定替選方案，設定決策程序和各巢層所能指定之解釋變數彼此間皆有密切關係。茲以住宅選擇中之租買選擇為例，其可能處理方式有下列數種：
（一）將租買選擇列為單一巢層之選擇。如本研究第二節所架構之三巢層住宅選擇中，租買選擇即設定為最優先之選擇決策。此時可以被指定於最上巢層的解釋變數，除包容值之外必須與租買選擇之效用有關。最簡單的方式就是指定租買之方案特定虛擬變數，對購屋方案而言，其值為 1 ；對租屋方案而言，其值為 0 。林祖嘉（1990）即採用此種方式。此方式有其缺點，就觀測之家戶而言，租屋的家戶與購屋的家戶是不同的兩個群體，吾人並未觀測購屋者對租屋選擇方案之效用屬性，甚至未能觀測租屋方案是否為購屋者之替選方案。反之亦然。此外，以（ 0,1 ）虛擬變數處理租買選擇，則效用函數中其他解釋變數均假設不變。然而，事實上，當家戶由租屋轉而購屋時，家戶的房屋支出負擔必然增加，因而造成其他消費支出的減少。同時，購屋者有不動產增值的收益，而租屋者則無。諸如此類，在指定效用函數時，兩者將有不同考量。簡單的説，租屋者選擇住宅可能僅為單純的消費動機，而購屋者則同時含有消費及投資動機。因此，以虛擬變數方式處理租買選擇，將造成效用函數指

定上的偏誤。然而，此種指定方式亦有優點，即虛擬變數可以吸收模型操作時的誤差（含隨機項假設誤差，函數指定誤差及變數衡量誤差等等），因此可以準確估計租買選擇之市場佔有率。
（二）以選擇者家戶之現有租買決策作為設定其替選方案之依據。意即，現有之租屋家戶以其它租屋住宅為其替選方案集合；而現有之購屋家戶以其他購屋住宅為其替選方案集合。此種方式亦有假設上的缺點，即忽略了租，買家戶交換選擇之可能性。然而對於以橫斷面資料 （cross－section data）建立之靜態住宅選擇模型而言，此假設或將不致造成太大的偏誤。但若建立動態住宅模擬模型時，則以此方式處理租買選擇將會擴大偏誤。
（三）以其他選擇者家戶之租買決策為替選方案之租買決策。亦即，在指定住宅替選方案時，以其他家戶之住宅為其替選方案，並以住在該替選方案住宅之家戶的租買情形定義住宅作為替選方案之租買決策。本研究第二節所架構多項Logit模型及二巢層Logit模型即以此方式設定替選方案。
（四）其它處理方式皆可視為前述方式之延伸，包括（1）將租買市場完全區隔。意即分別就租屋市場及購屋市場各自建立住宅選擇模型。（2）將租買選擇併入其他替選方案。以本研究之二巢層住宅選擇則為例，可以將租買選擇視為界定替選方案之另一指標，因而前述48種住宅類型將擴大成為 96 種住宅替選方案。

四，實證分析

本研究以1980年美國之公用個體抽様資料（the Public Use Microdata Sample，PUMS）為基礎進行分析。該資料係以1980年美國人口及住宅調查（Census of Population and Housing）為母體抽取 5% 之樣本而得之個體家戶資料（diaggregate data）。該資料包括美國各大都會區統計區（Metro－ politan of Statistic Area ，MSA）之家戶抽樣資料。本研究以聖地牙哥（San Diego，CA）都會區為研究區進行前述模型之實證分析。其住宅之基本統計資料如表一所示：

表一 聖地牙哥（San Diego，CA）之住宅抽樣統計分配表

單位：住宅單元

住宅權屬分類	住宅型態		合 計
	透天住宅	集合住宅	
購屋住宅	15645	1380	17025
	(46.02)	(4.06)	(50.08)
空 屋	5105	9620	14725
	(15.02)	(28.30)	(43.32)
合 計	1073	1171	2244
	(3.16)	(3.44)	(6.6)

PUMS所提供的資料包括（1）家戶社會經濟屬性資料，如家戶所得，戶規模，戶長年齡，戶長職業，戶長種族等；（2）住宅屬性資料，如住宅樓地板面積，建物基地面積，建物年齡，建築型態以及室內設施（水電，暖氣空調，廚房及衛浴設備等）用以界定住宅內部品質。唯PUMS缺乏詳細之區位資料，故無法彙整社區環境屬性。

本研究在架構住宅單元（即最低巢層）之選擇時，將其他家戶所選擇的住宅指定為住宅單元之替選方案。因此此巢層替選方案之個數與家戶樣本大小有關。若樣本數太大則造成過多的替選方案，而將導致模型配合度（ ρ^{2} ）下降，並增加參數校估成本；反之，若樣本數太小，則造成參數校估偏誤。本研究首先自PUMS資料中刪除空屋住宅，再隨機選取若干個家戶作為參數校估的樣本資料。經多次測試結果，最後選取 600 個家戶樣本作為住宅單元之替選方案集合，再設定若干方案節選規則以刪除不適當之替選方案。由於觀察樣本中所獲得的資料皆僅為家戶所實際選擇之方案屬性，而替選方案的屬性皆為未知。因此，如何衡量替選方案的屬性，是 Logit模型在實證上的困難之一。本研究所採用的方法是以其他家戶所選擇的住宅作為替選方案，並以該住宅單元之屬性資料（如：房間數，區位）作為替選方案屬性資料，而家戶屬性則未以替選方案取代。Waddell（1989）隨機選擇了其他兩個家戶的住宅作為替選方案；Quigley（1976）以替選方案子集合之屬性平均值予衡量方案屬性。本研究則採用另一種方式，即觀察樣本之所有家戶皆為可能之替選方案（以 600 個家戶樣本為例，每一家戶皆可能有 599 個替選方案可供選擇）。再設定方案篩選原則，將不適用的方案刪除。例如房屋價格轉換成年租金當量（即住戶之每年使用住宅之機會成本）後，若數值高於家戶之年所得，則删除該方案；又例如設定單身住戶不會選擇三個臥室以上之住宅，因此對單身住戶而言，删除該等方案。剩餘之方案皆為可供選擇之替選方案，而每一家戶皆有不同之替選方案集合。

表二顯示本研究各模型之參數校估結果，表中第一行為模型之解釋變數。由PUMS資料中，本研究整合四項變數。分別是（1）可支配所得。其定義為家戶年所得扣除年租金（租屋家戶）或年租金當量（購屋家戶）之所得餘額。年租金當量（rent equilevent）是用以將購屋家戶之購屋，維修及税賦成本轉換成以年為時間單位的現值成本，做為和租屋家戶之年租金比較之成本當量。陳彥仲及王健陽（1995）對租金當量之計算方式有詳細之討論。本研究依該研究之建議採用使用者成本法 （the user cost approach）予推估租金當量，並將計算後之可支配所得取自然對數置入模型之中。 （2）室內品質評點。本研究依據PUMS所提供的住宅及建築物屬性資料逐項賦予評點，各單項評點範圍為 $1 \sim 10$ 點，最後就每一個住宅單元予以加總。（3）住宅房間變量。本研究將家戶人口規模與住宅房間數組合成為房間變量。由於住宅數是住宅類型分類的指標之一，因此在二巢層及三巢層選擇結構時，必須將住宅房間變量指定於＂住宅類型選擇＂巢層之效用函數之中。（4）購屋虛擬變數。對於由購屋家戶所持有的住宅而言，其值為 1 ；其他為 0 。本研究在多項及二巢層Logit模式中，由於租買選擇並非替選方案，因此將購屋虛擬變數指定在＂住宅單位選擇＂巢層內；而在三巢層Logit模型，由於租買選擇互為替選案，故在第一巢層中設定了租買替選方案特定虛擬變數的變數。

表二之各模型中，多項Logit模型（MNL）之四個解釋變數的符號皆正確，但顯著性並不高。其中以室內品質評點變數之顯著性最低；而在二巢層（2NMNL）及三巢層（3NMNL）之Logit模型中，因該變數之顯著性甚低而予以排除。二巢層Logit模型之包容值係數為 0.9305 ，漸近 t 值為 14.80 ，顯著不為零。但若以係數為 1.0 為虛無假設，進行檢定時，則其漸近 t 值經計算為 1.105 ，

意即統計上無法拒絕包容值係數為1．0之虛無假設。換句話説，在本研究所架構的二巢層Logit模型中，住宅單元選擇及住宅類型選擇巢層間不可衡量效用之隨機變異並無顯著差異。因此此模型可予以簡化為多項Logit模型之結構。但就模型之配合度而言，多項Logit之值為0．0056，而二巢層Logit模型之值為0．065，有明顯改善。此現象説明了在二巢層架構下，替選方案個數經篩選後相對比多項Logit模型少了許多。雖然二者之決策結構並無差異，但在解釋能力上卻仍有助益。至於為何會造成上，下巢層間之隨機變異無差異？推測其原因或與租買選之決策有關。租買選擇對住宅選擇而言，是為重大決策。而本研究將此項決策置於住宅單元（下巢層）之選擇中，擴大了下巢層之內部變異，而導致了上，下巢層間相對變異縮小。此結果即建議吾人應將租買選擇置於巢層上部，而讓家戶在住宅選擇時優先決定此項決策。三巢層之Logit模型之校估結果，對吾人前述租買選擇決策結構之推論提供適當的佐證：第一巢層（租買選擇）及第二巢層（住宅類型選擇）之包容值係數皆顯著不為零，而且經計算檢定亦皆顯著不為 1 。換句話説，由此模型推論，家戶在選擇住宅時，其決策程序是先決定租買選擇，其次決定住宅類型，最後再決定住宅單元。然而，三巢層Logit模型中，購屋方案特定虛擬變數之係數符號與預期不符，但不顯著。究其原因可能有二：（1）購屋方案特定虛擬變數在該巢層中並非適當之解釋變數；（2）校估模型係數所採用的階段式校估程序產生了相當的偏誤。此皆值得吾人進一步探究。

表二 模型參數比較

巢層及解釋變數	MNL	2NMNL	3NMNL
住宅單元選擇： \ln（可支配所得）		$\begin{gathered} 0.04 \\ (2.78) \end{gathered}$	$\begin{gathered} 0.16 \\ (6.66) \end{gathered}$
	0.14		
	（1．94）		
\ln（室內品質評點）	1.48	$\begin{gathered} 1.04 \\ (7.04) \end{gathered}$	
房間變量	（1．80） 0.06		－
	（3．35）		
購屋虚擬變數	0.22		
	（1．94）		
LL（ α^{\wedge} ）	－2792．00	－1617．60	－1250．2
$\rho^{\wedge} 2$	0.01	0.02	－12502
住宅類型選擇：包容值（I ik）		0.93	$\begin{gathered} 0.48 \\ (9.98) \end{gathered}$
	－		
房間變量	－	（14．80）	
		0.06	0.12
		（3．08）	（5．03）
$\begin{aligned} & \operatorname{LL}\left(\alpha^{\wedge}\right) \\ & \rho^{\wedge} 2 \end{aligned}$	0.01	$\begin{array}{r} -1151.00 \\ 0.02 \end{array}$	$\begin{gathered} -1029.9 \\ 0.02 \end{gathered}$
租買選擇： 包容值（It）	－	－	$\begin{gathered} 0.34 \\ (3.65) \end{gathered}$
購屋方案特定虛擬之變數	－	－	
			－0．09
$\operatorname{LL}\left(\alpha^{\wedge}\right)$	－	－	（－0．85）
	－		-294.7
N	600		
$\Sigma \operatorname{LL}\left(\alpha^{\wedge}\right)$		600.00	600
ρ^{\wedge} 2	-2792.00 0.01	－2768．60	－2574．8

表二之3NMNL模型中，可支配所得之係數值為 0.16 ，房間變量為 0.12 。兩者符號皆為正值。此顯示，以各家戶目前所選擇的住宅而言，家戶消費住宅的效用水準隨家戶所得及住宅房間數的增加而增加，此與吾人先驗認知相符。在判別係數數值方面，吾人可以計算家戶可支配所得（ Z_{ij} ）與住宅房間數（ $\mathrm{ROOM}_{\mathrm{j}}$ ）之邊際替代率（Marginal Rate of Substitution，MRS）。當家戶欲增加一個房間的消費而維持原來的消費效用水準不變，所必須放棄的可支配所得可以計算如下：

$$
\begin{equation*}
\operatorname{MRS}\left(\mathrm{Z}_{\mathrm{ij}}, \operatorname{Room}_{\mathrm{j}}\right)=\frac{\partial \mathrm{z}_{\mathrm{ij}}}{\partial \operatorname{Room}_{\mathrm{j}}}=-\left(\frac{\alpha_{2}}{\alpha_{1}}\right) \frac{\mathrm{Z}_{\mathrm{ij}}}{\text { Room }_{\mathrm{j}}} \tag{11}
\end{equation*}
$$

以1980年家戶之年可支配所得為 $\$ 10,000$ 美元，而居住房間數為 5 間 為例。代入（11）式計算，得每年必須花費 1,500 美元以增加一個房間的消費。此一估計數值是為可以被接受的結果。

五，結論

本研究嘗試利用不連續選擇理論中廣為使用之Logit模型建立程序性住宅選擇模式。研究結果發現，家戶將租買選擇列為最優先的決策，其次決定住宅類型，包括住宅型式（透天或集合住宅），室內空間（如房間數），住宅區位（如市區或郊區）以及住宅品質（如建築物年齡，衛浴及廚房設備，空氣調節．．等因素），最後在各住宅類型中挑選最適當之住宅單元。此結果與吾人對住宅選擇之先驗認知相符。同時也驗證了本研究所取用之PUMS資料，模型架構及參數校估方式皆有其實證上的價值。然而本研究在進行中遭遇若干問題有待來克服：（1）本研究所選用的資料中缺乏區位之詳細資料，因此有關社區影響住宅選擇之因素均無法納入本研究之中，使得模型之解釋能力偏低。然而，雖是有此缺點，但家戶選擇住宅之決策結構仍然可以獲致合理的結論。顯示詳細的社區及區位因素，一般而言並不影響家戶之決策程序。（2）巢式Logit模型受到校估技術之限制，不宜設定過多巢層。前述對包容值的係數所進行的推論，在理論上雖為吾人所接受，但實證經驗中仍有不可避免的偏誤，例如參數校估方式，效用函數的型態以及變數的衡量等皆為可能之誤差來源。舉例而言，包容值的係數是由最大概似法所校估而得。在巢式 Logit模型的一般校估方式是採用程序性的校估步驟。即先校估最下巢層的參數係數值，並計算包容值，再帶入上巢層進行參數校估。若有更高巢層則必須再計算巢層之包容值，再帶入更上巢層予校估參數，依此類推。因此，除了最下巢層之係數校估無偏誤之外，其他高階巢層的係數皆為有條件限制下的最大概似估計值，是為有偏誤的估計值。而且愈是高階巢層，偏誤愈無法掌握。因此，一般而言並不適於架構過多的巢層。此外，在某些情況，包容值的參數校估結果亦有可能出現符號錯誤（負值）的情形。例如，觀察樣本中家戶的實際選擇與巢層之期望效用大小不一致時，家戶可能選擇了期望效用比較小的方案，因而造成包容值的參數符號錯誤，此為顯示性偏好 （Revealed Preferences）的缺點；又例如包容值與該巢層的其他解釋變數產生高度相關時，亦有可能造成符號錯誤。因此，以包容值的係數來判斷決策程序，在實證上僅可以視為參考指標，而非絕對指標。本研究提出三巢層之Logit模型，其解釋結果尚屬合理，若欲進一步決定更多巢層決策結構，則宜先克服參數校估問題。

依本研究的估計結果顯示，家戶在選擇住宅時，確有程序性的過程。而最大的變異乃為租屋或購屋的抉擇。此結論有助於吾人對住宅選擇更進一步的了解，同時也可以提供住宅決策當局在研擬住宅政策時，應首先重視租屋市場與購屋市場之間的差異。甚至於考慮是否有無必要

予以區隔的問題。然而，本研究在變數選擇時，並未加入政策性變數，例如：住宅貸款利率，經濟成長率，不動產增值速率等總體經濟變數。因而無法做成具體之政策性建議。此亦有待後續以台灣為研究對象時，將予納入前述重要政策變數，並分析其對家戶選擇行為之影響。如此，將可對台灣之住宅政策提供直接的貢獻。

在檢視係數數值方面，除了計算住宅屬性之間的邊際替代率之外，亦可以透過對選擇機率的微分，推計住宅屬性的期望彈性係數，例如期望價格彈性，期望所得彈性等，予以判斷參數係數大小的合理性。唯其計算較為繁複，需另以程式計算。本研究專注於住宅選擇決策程序之探討而非以探討彈性係數為研究目的，因此並未計算。然而，分析住宅價格彈性及所得彈性對於了解住宅市場的經濟特性卻是非常重要，此亦有待後續進一步研究。

附 錄

McFadden（1978）定義極端值分配為：
對 $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \ldots ., \mathrm{y}_{\mathrm{Jn}} 0, \mathrm{G}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots ., \mathrm{y}_{\mathrm{Jn}}\right)$ 為滿足下列條件的函數。
（1）G函數不為負。
（2）G函數具階齊次性，＞0；亦即 $\mathrm{G}\left(\alpha \mathrm{y}_{1}, \alpha \mathrm{y}_{2}, \ldots, \alpha_{y_{\mathrm{Jn}}}\right)=\alpha^{\mathrm{u}} \mathrm{G}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{Jn}}\right)$
（3）對 $\mathrm{i}=1,2, \ldots$. In而言， $\lim _{y i \rightarrow \infty} G\left(y_{1}, y_{2}, \ldots, y_{J n}\right)=\infty$
（4）G函數對個不同的yi進行次導數；若為奇數，則其值不為負；若 1 為偶數，則其值不為正。

参考文獻

段良雄
1984 〈巢式多項羅機（NMNL）運具選擇模式〉 《運輸計劃季刊》13（3）：285－308。林祖嘉

1990 〈反向巢型多項式Logit模型下的住屋需求與租買選擇〉《經濟論文》18（1）：137－158。陳彥仲，王健陽

1995〈高雄市房租與房價關係之研究〉，發表於＂中華民國都市計劃學會一九九五年年會及論文發表會＂，中華民國都市計劃學會。
Anas，A．and Chu，C．
1984 ＂Discrete Choice Models and the Housing Price andTravel to Work Elasticities of Location Demand＂，Journal of Urban Economics，15（1）：107－123．
Ben－Akiva，M．and Lerman，S．R．
1985 Discrete Choice Analysis：Theory and Application to Travel Demand，The MIT Press． Domencich，T．and McFadden，D．

1975 Urban Travel Demand：A Behavioral Analysis，North Holland．
Lerman，S．R．
1977 ＂Location，Housing，Automobile Ownership，and Mode to Work：A joint Choice Model＂，Transportation Research Record，610：6－11．
McFadden，D．
1973 ＂Conditional Logit Analysis and Qualitative Choice Behavior＂，in Frontiers in Economics，Ed．P．Zaremka，Academic Press，New York．
1978 ＂Modeling the Choice of Residential Location＂，in Spatial Interaction Theory and Planning Models．Ed．Karlqvist．et．al．，North Holland Publishing．
1981 ＂Econometric Models of Probability Choice＂，in Structural Analysis of Discrete Data： with Economic Applications，Ed．Manski，C．F．and Mcfadden，D．，MIT Press．
Quigley，J．
1976 ＂Housing Demand in the Short Run：An Analysis of Polytomous Choice＂，Explorations of Economic Research，3（1）：76－102．
Rowendal，J．
1988 Discrete Choice Models and Housing Market Analysis，Ph．D．Dissertation，Free University（Vrije Universiteit），Amsterdam．
Small，K．A．and Rosen H．S．
1981 ＂Applied Welfare Economics with Discrete Choice Models＂，Econometrica 49：105－ 130.

Waddell，P．
1989 Factors Determining Household Choices of Residence，Workplace and Housing Tenure，Ph．D．Dissertation，the University of Texas at Dallas．

[^0]: ＊成功大學都市計劃系副教授

