模楜語意變數法應用於住宅消費決策行爲之初探研究 An Application of Fuzzy Linguistic Variable Method （FLVM）on Housing Consumption

連經宇＊陳彥仲＊＊
Ching－Yu Lien，Yen－Jong Chen

摘 要

家户在選擇住宅購屋時，包含甚鳥複雜的決策過程，其中的不確定性甚高。如何衡量這些複雜的因素，使其成為適切的購屋評估決策指標，以供建築投資業者規劃設計合適的住宅產品，㐆本文所欲探討之主要課題。相關文獻中對於住宅消費決策行鳥的研究大都需要人口統計資料及生活型態等解釋變數。在問卷調查過程中消費者對自身需求可能並非明確具體，而具有模糊情形。此外，資料中所顯示的資訊是否能眞正表現出消費者本身的模糊特性，亦値得商榷。本研究的目的在於應用模糊語意變数法（Fuzzy Linguistic Variable Method，FLVM），經由解模糊化 （defuzzify）的過程，將以三角模糊數表示的模糊權重，轉換㯊明確數值（crisp number），再進行各初選指標的重要度排序，以描繪出家户對不同住宅屈性的重視程度。在方法上，本研究嘗試將模糊語意變數法應用於不動產決策研究領域，期望結合模糊理論，將具模糊性與不確定性的家户購屋主觀行爲加以客觀歸納成不同購屋決策者主觀判定下的評價，以得到具有共識性且較客觀的結果，並據以建立住宅消費決策評估指標。本研究傾取民國86年居住在花蓮地區之家户問卷調查資料，建立了家户購屋決策的重視程度指標。結果發現花蓮地區居民購屋時比較重視的因素包括「附近有無公害污染」，「地段增值潛力」，「學區」，「房價」，「交通方便」等。

關鍵詞：住宅，模糊語意變數法，住宅消費

ABSTRACT

In this study，we attemptted to apply fuzzy theory to establish the evaluating indicators of house buying．Literature on housing choice concludes that the decision making behavior is havily relied on the social－economic variables，such as family type and prefernce．However，the answer obatined from questionnaire survey are ambiguous．The purpose of this study is to transfer the weighted fuzzy mean indicated by triangular fuzzy number into the crisp number by applying Fuzzy Linguistic Variable Method （FLVM）and using defuzzify procedure．We analyze the significant degree of different housing attributes from household by ranking all of the first choice indications．Empirical data are selected from household questionnaire survey of Hualien area in 1997．We estimated the significant indications of household＇s decision on housing choice．Our finding indicated that the household in Hualien area more emphasized the factors on housing choice including public nuisance and pollution，increasing value potential，school location，housing price and traffic convenience，etc．Households in different areas have different significance on housing choice．
Key words：Housing，Fuzzy Linguistic Variable Method（FLVM），Housing Consumption
（本文於1999年3月2日收稿，1999年9月20日審查通過）

[^0]—，前言
消費者在購屋時，包含甚爲複雜的決策過程，其中的不確定性甚高。例如住宅區位的決定住宅型式的選擇等等。一般而言，家戶對住宅的偏好並非絕對明確，而是存在若干程度的不確定性。如何衡量這些複雜而且不甚明確的因素，使其成爲完整而適切的住宅消費決策評估指標，以供建築投資業者的參考，爲本文所欲探討之主要課題。

本研究嘗試應用模糊理論（Fuzzy Theory）中的語意變數法（Linguistic Variable Method），分析家戶住宅消費決策行爲的歷程。將具不確定性的家戶購屋行爲主觀評估指標，加以客觀歸納不同購屋決策者主觀判定下之評價準則，而得到一個具有共識性的結果。具體而言，本研究應用模糊語意變數法（Fuzzy Linguistic variable Method，FLVM），經由解模糊化（defuzzify）的過程，將以三角模糊數表示的模糊權重，轉換爲明確數値（crisp number），再進行各初選指標的重要度排序，以描繪出家戶對不同住宅屬性的重視程度。

在實證分析方面，本研究基於既有資料取得之方便，擇取了目前居住在花蓮縣（以人口數最多的花蓮市與吉安響兩鄉鎭市爲主）有購屋意願的家戶進行實證分析。此外，爲便於研究成果之比較，本研究參考相關文獻（黃建勝，1989）將住宅消費決策影響因素簡略劃分爲區位，環境景觀及房屋價格等三大因素。

二，文獻探討

傳統在消費者決策行爲之研究方面大都使用多屬性效用模式之效果較佳，其最基本假設在於決策者可將其偏好直接以效用函數予以表達（黃盛銘，1996）。但效用函數是否能眞正地反映出消費者對住宅此一特殊產品屬性的模糊偏好，權重之模糊性及不確定性，實有其爭議。此外，由於住宅消費所做的選擇是屬於個體的選擇行爲，因此使用不連續選擇模型來分析購屋選擇是適當的分析方法之一（McFadden，et al．，1981）。綜合相關研究（劉怡吟，1996；陳彥仲，1997）顯示，住宅消費決策行爲以利用不連續選擇理論中之Logit模型來建構住宅消費選擇模式最爲常見。其次爲迴歸分析，因素分析，集群分析，卡方檢定及相關分析等研究方法，當然這些方法均各有其優缺點（參見表一）。以Logit模型爲例，其優點爲理論基礎完備，較符合實際行爲決策過程。但其缺點則包括誤差隨機效用項是否爲Gumbel分配則未受檢定以及如何決定替選方案集合的問題，替選方案效用函數型態及解釋變數的指定問題，參數校估方式以及個體資料與總體資料的適用性等問題。

此外，國內的相關研究（鄧振源，曾國雄，林幸加，1989）指出在現實世界的許多決策中，許多是在「模糊環境」下進行，此一環境包括目標（Goals or Objectives），限制（Constraints）及可能行動（Possible Actions）的結果等都無法明確知道。尤其系統日趨複雜後，包含更多人性行爲判斷時，模糊的觀念也日益重要。

有關模糊決策的研究，起始於Bellman and Zadah（1970）的「模糊環境下的決策」（Decision－ Making in a Fuzzy Environment），以後逐漸發展出許多模糊決策方法。而且，綜合相關文獻的研究，一般對於住宅消費決策行爲的研究，大都利用人口統計變數及生活型態變數等解釋變數。而這些解釋變數常需要由消費者給予明確的數字資訊以進行分析。然而在資訊複雜的環境中，

表一 住宅消費決策行為常用之研究方法比較

研究方法	理論基礎	優點	缺點／限制	相關文獻
Logit模型	個體機率選擇理論	理論基礎完備，較符合實際行爲決策過程	誤差隨機效用項是否爲Gumbel分配，如何決定替選方案集合，替選方案效用函數型態及解釋變數的指定 ，參數校估方式及個體資料與總計資料的適用性	1．Lau，Kin－Nam and Post，G．V．（1993） 2．劉怡吟（1996） 3．陳彥仲（1997）
迴歸分析 （1982）	以統計學 方法建立 特徴價格函數	輸入與輸出資料及關係式均爲明確且估計方法較爲完備	需收集大量資料；可能產生共線性或線性重合及自我相關之現象；衡量不明確系統時，會產生模型誤差	1．Tanaka，et al． 2．曹勝雄，曾國雄， 江勁毅（1996） 3．洪鴻智（1997）
因素分析	多變量統計方法	可簡化資料；檢視多重共線性	一種高度主觀之分析過程；無統計檢定方法可使用；轉軸在理念或常識判斷中之含義含混不清	1．Asker，D．（1981） 2．黄俊英（1991）
集群分析	生物分類學	可衡量個體或事物間相似度或距離；建立一客觀的組群分類標準；發展描述組群的方法及說明其在統計上的可靠性	分群後不易獲得原始資料的訊息；太侷限於階層的構造，忽視群落內均質是否適度之問題，缺乏適當之統計檢定方法	1．黃俊英（1991） 2．陳偉傑（1997）
卡方檢定及相關分析	統計學方法	可判斷變數間是否相關及相關程度	卡方檢定無法說明變數間相關程度；相關分析無法說明因素間是否獨立或發生相關的原因	1．Herzog，T．（1996）

消費者對自身需求並非明確具體，而具模糊性。取得明確的資訊實際上是很困難的。即使資料中所給予的明確資訊是否能眞正表現出消費者本身在偏好上的模糊特性，亦値得商榷。

爲了克服上述問題，近年來已有將模糊理論運用至消費者決策行爲之相關研究。希望能適切地反映出消費者對不同產品屬性的偏好及重視程度。然而，將模糊理論應用在購屋決策行爲的研究甚爲少見，尤其是將模糊語意變數法應用在購屋決策行爲的研究，則又更少。Dilmore （1993）或許是最早體認模糊理論對房地產之可能應用的學者（Bagnoli and Smith，1998）。他認爲模糊理論是處理人類在日常生活中大多數決策及評估行爲的不確定性之一種方法。若住宅消費

決策行爲之研究能結合模糊理論，將更能表現出消費者本身的模糊特性。雖然目前研究處理不易客觀衡量且具質化性質之決策行爲的方法甚多，但何未有能合理且完全解決類似住宅消費決策行爲如何讓具有很圭觀的陳述轉變爲較客觀指標的衡量方法。而以模糊理論爲基礎的分析方法，對具質化性質的主觀判斷與模糊性行爲的衡量，則能有較爲適切的描述。在處理方法上也較具彈性與簡便，因此在解決不易量化的衡量方法上，提供了一個可行的思考方向。

近年來國內外利用模糊理論來處理或整合特定較不易量化問題的研究甚多。文獻中有關指標權重求取之方法，以「專家估測法」較爲簡單，但理論基礎較弱。「固有向量法」雖具理論基礎且可進行檢定，但在問卷設計與塡答過程方面較複雜。「熵值權重法」是由評估者之評估矩陣反推而得，運算過程複雜。若同一準則之量化數值差距很大時，其權重值會變得很大，未必符合實際㹜況。而「語意變數法」則符合模糊特性，且容易執行（馮正民，呂秀玉，1997）。

此外，語意尺度的決定可爲等距的區間尺度，亦可爲非等距的區間尺度，端看應用問題的特性而定。而語意尺度的決定除可以Chen and Hwang（1992）發展的「模糊語意尺度」處理外，亦可以統計方法透過調查推求詞彙的隸屬齿數（汪培庄，1990）。模糊語意尺度爲Chen and Hwang （1992）提出的模糊多屬性決策分析（FMADM）中的一部份（曾國雄等，1997）。首先假設多屬性決策問題中可同時包含模糊語意與明確資料，且模糊資料可用語意性措辭（linguistic terms）或模糊數表示。若模糊資料爲語意性措镝辛，首先須將其轉爲模糊數，然後將所有模糊數轉換爲明確分數。Chen and Hwang同時建議八個模糊數尺度（conversion scales），可利用13個語意性措镝，經由其轉換方法將語意性措辭模糊數，轉換成閉區間［0，1］的連續性明確値（阮金祥等，1998）。此方法可有效解決並改進傳統衡量問卷資料工具的缺失，並可降低模糊問卷埧答時的困難度。

三，研究方法

爲何衡量决策行薦之指標需要㭔由模糊理論來處理？因爲其大都率涉到「人的行爲］與「主觀的判斷」。Bagnoli and Smith（1998）就曾指出模糊邏輯在表達人類思考與決策行爲對房地產價格的固有不確定性具有適宜性。以「住宅消費決策行爲」爲例，假設有人認爲對房價的重視程度佔 70% ，就稱「極重視」，但也有人認爲對房價的重視程度佔 90% 才稱「極重視」；又有人認爲對交通便利的重視程度佔 60% 是「有點重視」，但也有人認爲只是「普通重視」而已。依不同的人而有不同的認定範疇。這些具高度主觀性判斷的衡量，並不易也不適宜用一般客觀的衡量方法直接䛨斷。

由於模糊理論的發展對於評量具主觀認定性質的問題提供一較具客觀性及科學性的方法，在處理主觀評量的問題上有良好的效果。因此，本研究擬參考馮正民及呂秀玉（1997）之研究，稍作修正，以「模糊語意變數法」建立影響住宅消費決策行爲評估指標的重要度與隸屬囦數，期能模擬購屋決策者對於各指標的認定行爲，以建立較爲合理的住宅消費決策評估指標衡量模式。

本研究是利用「模粯語意緻數法」配合「模糊數排序，等技巧，推求各初選指標的重視程度。進而篩選影響該決策行爲的重要決策指標。有關建立各初選指標之重視度程序如下：

1．語意變數及其尺度的設定

語意變數及其尺度的設定，可透過語意運算子的使用，将「重視程度1語意變數劃分㺔數個適當語意尺度，讓決策者各自選擇他們認爲合適的語意描述個人對此指摽的感受。進而透過事先設計好之各語意尺度所代表之模粯數，推算全體受訪者對各初選指標的䆩際感受値。從數理定義而言，所謂模煳數（fuzzy number）係指一個實數之模糊集合A。依Dubois and Prade（1983）， Klir and Folger（1988）以及Klir和Yuan（1995）澲模糊數的定義，其至少必須滿足以下三個性質： （1）A必須爲一個正規的（normal）模糊集合，亦即存在一實數 $X_{0}=1$ ；
（2）a－截集（a－cut）A對所有的a峞［ 0,1$]$ 必須是一個封閉區間，亦即必須是一個凸模榅集合；
（3）A的底集 ${ }^{\circ}+A$ 必須是有界的，亦即必須是連續的。
模精數的種類甚多，在應用上基於運算處理的方便性，一般以三角模楜數（triangular fuzzy number）最被廣爲使用。另外，爲更能表現原始資料的函數型態，亦有将模糊數的定義擴充爲梯形模糊數（trapezoidal fuzzy number），其與三角模楜數的區別在棅屬度爲1時呈現一段水平的線段，而非三角模糊數的一點（黄盛銘，1996）。而且若兩相同形狀的模楜數相加減，其結果仍爲同形狀的模楜數。此外，近年來研究者對於行爲科學的研究，所採用之衡量工具均以李克特尺度（Likert Scale，LS）或語意差別尺度（Semantic Scale，SDS）的量化方式爲主。由於LS及SDS有其建構明確及應用上方便之優点，惟本研究因受限於研究時間及資源的限制與考量計算時的方便性，万決定探用李克特尺度的量化方式。定義語意措鮹全集爲X＝｜極重視，有點重視，普通重視，不很重視，極不重視 $\}$ 。根據此五項唔意尺度，來反映受訪者對各初選指標重視程度的認知。其次，本研究基於研究的需要及運算處理的方便性而使用三角模糊数信定各語意尺度，亦即經由問卷調查，要求受訪者於 1 －的整数尺度中，以區間值 U_{i} 表示住宅屬性的偏好値及住宅本身整骽的評䜖值 0 接著將偏好區間值轉換成對㛵三角形模糊數 \tilde{U}_{i} 主鸛認定各語意措觖變數的範圍，以便於模敉數的運算處理（黄盛銘，1996）。有關區間値 U ，與三角模喖數 $\tilde{U}_{\text {，}}$ ，的數學式茲定義如下：

$$
\begin{equation*}
U_{i}=\left(l_{i}, u_{i}\right) . \tag{1}
\end{equation*}
$$

其中
l_{i} ：受訪者對屬性i所產生偏好區間值的下限，
u_{i} ：受訪者對屬性i所產生偏好區間值的上限，
$U_{i}:$ 受訪者對屬性i所產生效用區間値。
而

$$
\begin{equation*}
\tilde{U}_{i}=\left(\frac{k-2}{L-1}, \frac{k-1}{L-1}, \frac{k}{L-1}\right) \tag{2}
\end{equation*}
$$

k：表示第k個語意尺度，
L：表示各初選指標劃分語意尺度的數目。
例如若欲衡量住宅消費決策評估因素的「重視程度」，即將「重視程度」視爲語意變數，可將語意變數劃分爲「極重視」，「有點重視」，「普通重視」，「不很重視」與「極不重視」五個語意尺度來表示，則各語意尺度的分佈範圍與三角模糊數如圖一所示。

2．問卷設計及調查

透過問卷調查可取得受訪者對各初選指標「重視程度」的評選，在問卷設計時，可將「重視程度」劃分爲數個語意尺度，以利受訪者選擇最適當的重要尺度。圖二說明如何由問卷設計的調查結果，獲得指標重要度分析所需的資料。以「住宅消費決策行爲」爲例，假設其初選指標包括房價，交通方便，至工作地點距離．．．等，則指標重視度的評選係指受訪者評量上述指標對「住宅消費決策行爲」的重視尺度。假設將重視尺度劃分爲「極重視」，「有點重視」，「普通重視」，「不很重視」與「極不重視」五個語意尺度，受訪者依其對各指標的感受選擇塤答項目勾選即可。根據所有受訪者的勾選結果加以統計彙整，即可得到受訪者認爲各指標的各重視尺度之統計結果，如圖二所示。

圖 一 購屋決策重視程度之等距區間尺度模糊數圖

	初選指標	極重視	有點重視	普通重視	不很重視	極不重視
	房價	\checkmark				
消費	交通方便		\checkmark			
決策	－	－	－	－	－	－
行爲	．	．	．	．	－	
指標	－	．	．	．	．	
	至工作地點距離			\checkmark		

統計結果

住宅	初選指標	極重視	有點重視	普通重視	不很重視	極不重視
	房價	15	8	6	4	2
	決策	交通方便	9	13	8	3
行爲 指標	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
	至工作地點距離	4	\cdot	\cdot	\cdot	\cdot

圖二 「住宅消費決策行為的重視度評選」之問卷設計示意圖

3．初選指標重視度的計算

決策者參照語意尺度隸屬函數的定義，就其主觀認定選擇各初選指標適合的語意尺度 k 。統計每一個初選指標中各語意尺度被選擇的次數 n_{sk} ，配合語意尺度所代表的模糊數，利用Liang和 Wang（1991）提出的公式（3）即可求得三角模糊數表示的各初選指標之模糊權重 W_{s} ，此權重可作爲初選指標重視度排序之用。

$$
\begin{align*}
& \mathrm{W}_{\mathrm{s}}=\left[\mathrm{n}_{\mathrm{s} 1}\left(0,0, \frac{1}{L-1}\right)+\ldots . .+\mathrm{n}_{\mathrm{s} 2}\left(\frac{0}{L-1}, \frac{1}{L-1}, \frac{2}{L-1}\right)+\ldots+\mathrm{n}_{\mathrm{sk}}\left(\frac{K-2}{L-1}, \frac{K-1}{L-1}, \frac{K}{L-1}\right)+\ldots+\right. \\
&\left.\mathrm{n}_{\mathrm{s}(L-1)}\left(\frac{L-3}{L-1}, \frac{L-2}{L-1}, 1\right)+\mathrm{n}_{\mathrm{sL}}\left(\frac{L-2}{L-1}, 1,1\right)\right] \ldots \ldots \ldots . ~ \tag{3}
\end{align*}
$$

其中 W_{s} ：第 s 個指標的權重，
n_{sk} ：表第 s 個指標中，第 k 個語意尺度被選擇的次數，
$\mathrm{N}: \mathrm{n}_{\mathrm{sk}}$ 的加總（有效樣本總數），
L ：各初選指標劃分語意尺度的數目，
k ：代表第k個語意尺度。

4．模糊數的排序

本研究探用Chen－Hwang（1992）提出的解模糊化（defuzzify）方法進行排序工作，比較各指標的模糊權重 ${ }^{\circ}$ Chen－Hwang法是先假設最大集與最小集的鉢屬函數概念，求出實際受測項目的總隸屬値。排序進行步驟如下：
（1）建立各初選指標之權重Ws的範圍分佈圖。
（2）建立最大集與最小集的隸屬函數：$\mu_{\text {max }}(x)$ 及 $\mu_{\text {min }}(x)$ 。令
最大集的隸屬函數爲：$\mu_{\text {max }}(x)=x, 0 \leqq X \leqq 1$

$$
\begin{equation*}
\{0 \text {, 其他. } \tag{4}
\end{equation*}
$$

最小集的隸屬函數爲：$\mu_{\text {min }}(x)=1-X, 0 \leqq X \leqq 1$

$$
\begin{equation*}
\{0 \text {, 其他. } \tag{5}
\end{equation*}
$$

$\mu_{\text {max }}(\mathrm{x})$ 與 $\mu_{\text {min }}(\mathrm{x})$ 分別與 W_{s} 的右界與左界產生交集。已知 $\mathrm{W}_{\mathrm{s}}=(\mathrm{a}, \mathrm{b}, \mathrm{c})$ 代表的三個點座標爲 $(a, 0), ~(b, 1), ~(c, 0)$ ，由 $(a, 0)$ ，$(b, 1)$ 兩點建立模糊函數 $y=(x-a) /(b-a)$ ，由 $(b, 1), ~(c, 0)$ 兩點建立模糊函數 $\mathrm{y}=(\mathrm{x}-\mathrm{c}) /(\mathrm{b}-\mathrm{c})$ 。
（3）如公式（6），由最大集隸屬函數與 W_{s} 的模糊函數求出右界値。

$$
\begin{equation*}
\mu_{R}(S)=\sup _{x}\left[\mu_{\max }(x) \wedge \mu_{W_{s}}(x)\right] \tag{6}
\end{equation*}
$$

將 W_{s} 的模糊函數 $y=(x-a) /(b-a), ~ y=(x-c) /(b-c)$ 與最大集隸屬函數 $y=x$ 產生交集。可得兩點 $(a /(1+a-b), a /(1+a-b))$ 與 $(b /(1+b-c),(1-c) /(1+b-c))$ ，取其中y座標（即隸屬度）較大者代表 μ ${ }_{R}(\mathrm{x})$ 。
（4）同理如公式（7），由最小集隸屬函數與 W_{s} 的模糊函數求出左界値。

$$
\begin{equation*}
\mu_{L}(S)=\sup _{x}\left[\mu_{\operatorname{mix}}(x) \wedge \mu_{W_{s}}(x)\right] \tag{7}
\end{equation*}
$$

將Ws的模糊函數 $\mathrm{y}=(\mathrm{x}-\mathrm{a}) /(\mathrm{b}-\mathrm{a})$ ， $\mathrm{y}=(\mathrm{x}-\mathrm{c}) /(\mathrm{b}-\mathrm{c})$ 與最小集隸屬函數 $\mathrm{y}=1-\mathrm{x}$ 產生交集。可得兩點 $(b /(1+b-a),(1-a) /(1+b-a))$ 與 $(b /(1+b-c),(1-c) /(1+b-c))$ 兩點，取其中 y 座標（即隸屬度）較大者代表 $\mu_{\mathrm{L}}(\mathrm{x})$ 。
（5）定義模糊數 W S 的總評分値（total score），即明確値，如（8）式。
此處 $\mu_{\mathrm{R}}(\mathrm{s})$ 及 $\mu_{\mathrm{L}}(\mathrm{s})$ 皆是介於 $[0,1]$ 間之一個唯一且明確之實數。

$$
\begin{equation*}
\mu_{T}(s)=\left[\mu_{R}(s)+1-\mu_{L}(s)\right] / 2 . \tag{8}
\end{equation*}
$$

（6）比較各指標模糊權重所代表的總評分 $\mu_{\mathrm{T}}(\mathrm{s}), \mu_{\mathrm{T}}(\mathrm{s})$ 値愈大者代表該指標愈重要。
以「住宅消費决策行爲」爲例，假設有坪數 $\left(\mathrm{W}_{1}\right)$ ，房價 $\left(\mathrm{W}_{2}\right)$ 及交通方便 $\left(\mathrm{W}_{3}\right)$ 三個初選指標，欲進行排序工作，經各指標三角模糊數的統計分析後，得到此三指標的權重三角模糊數分別爲 $\mathrm{W}_{1}=(0.265,0.450,0.651), ~ \mathrm{~W}_{2}=(0.735,0.935,0.991), ~ \mathrm{~W}_{3}=(0.614,0.814,0.935)$ ，其隸屬函數分佈如圖三所示。依據上述此三指標權重的排序計算過程，可得結果爲：$W_{2}>W_{3}>W_{1}$ 。

經由上述的分析程序建立各初選指標的重視度，並排列重要順序，據此，可選出重要的幾個指標作爲衡量決策行爲的決選指標。決選指標的決定可依總評分値 $\mu_{\mathrm{T}}(\mathrm{s})$ 決定，例如選擇 $\mu \mathrm{T}$ （s）值大於 0.5 以上者爲決選評估指標。若最後選出 m 個決選指標，則 $\mathrm{X}_{1}, ~ . . . \mathrm{X}_{\mathrm{m}}$ 即可作爲後續指標評估分析之用。

四，實證分析

爲說明決策行爲如何以「多指標」及「模糊數量化」的方式處理，本研究以建立購屋者決策評估指標之衡量爲對象，進行實證研究。

（一）問叁調查及資料限制與說明

爲避免使居住於外地或雖設籍於當地但目前居住在外地的居民對調查分析結果可能產生的偏誤及提高實證結果的效度，本研究之實證資料選自目前居住在花蓮縣的花蓮市及吉安鄉有購屋意願的家戶（無論其是否設籍於當地）之問卷調查資料。該調查時間自86年5月至6月，共計2個月。由調查員至該兩郷鎮市的各房屋仲介公司及銷售工地接待中心進行調查。爲提高問卷的回收率，係採便利抽樣（convenience sampling）法（爲非機率抽樣方式）由調查員事先過濾刪除目前居住於外地或雖設籍於當地但目前居住於外地的居民，選取目前居住在當地的家戶（無論其是否設籍於當地）進行直接訪談調查。惟該資料的限制是受限於調查之時間，經費及人力，有關各評估指標在各尺度分佈下對住宅消費決策的影響程度並未進行第二次調查。

本研究在問卷初稿完成後曾進行問卷前測。問卷回收後，將各部份內容進行因素分析。探用主成份分析法（principle factor analysis）及最大變異數旋轉法（varimax rotation）對購屋首要考慮因素及購屋評估準則變數作因素的萃取。萃取的標準是依據Hair，J．F．，et al（1995）所提出的取特徵值大於1的因素，再以最大變異數轉軸旋轉法旋轉。旋轉後的因素負荷量（factor loading）的絕對值必須大於 0.5 ，才能組成該因素的問項，不符合標準者予以剔除。由於受訪者在購屋時首要的考慮因素中，坪數及住宅類型問項的信賴度過低，故將其剔除在正式問卷的初選決策指標主因素中。此外，由於有不少受測者反映購屋時會考慮住家附近有無公害污染及房屋視野景觀是

否良好等可能會影響居住生活品質的環境景觀因素，因而在修正後的正式問卷中決策評估指標增加了屬於環境景觀主因素了兩個選項（即住宅附近有無公害污染及房屋視野景觀）。

此外，因爲影響房價的任何屬性均會隨社會經濟情況的變化而經常變動，小至住宅本體，大至總體環境，任一屬性對形成住宅價格的影響程度會產生不一致的現象。本研究爲縮減原始資料的數量以簡化分析起見，擬將住宅附近地段增値潛力列入房價主因素的選項內。而附近地段的增値潛力係指因爲政府進行公共建設等重大因素而引起某一個特定地區土地價格未來可能會發生上漲的現象。就學理的觀點而言，可舉溫特（Paul F．Wendt）地價模型與梅爾（Rene＇Mayer）模型爲例，說明公共建設對房地產價値的影響。首先在溫特的地價模型中，預期總收益深受公共建設費用的影響。亦即地價會隨著公共部門建設資金的投入而有正面的影響。而在梅爾的模型中，影響地價的主要因素包括都市成長率，公共建設，交通路網及不同使用地的規劃分配。也就是說政府公共建設的導入，對於都市公共設施服務水準的改善，在不動產價値上會產生正面顯著的影響。因此，附近地段的增値潛力亦可說是影響房價的因素之一。

進行正式問卷時，本研究共發放 2,100 份關於「重視度」之問卷，其中花蓮市共發放 1,400 份，回收問卷 1,397 份，有效問卷 1,330 份，無效問卷 67 份；吉安鄉發放 700 份問卷，回收問卷及有效問卷均有 700 份。有關受訪者個人的基本資料茲分別列於附表一至附表七。

（二）「家戶住宅消費決策評估指標」之衡量模式建立與實證結果分析

根據調查結果可知，在受訪者中於未來一年有購屋意願者約佔七成左右，而受訪者購屋時之首要考慮因素在花蓮市依序爲房價，區位，住宅類型，坪數，吉安鄉則依序爲區位，房價，坼數，住宅類型，此乃因花蓮市近年來因已趨飽和，居民逐漸往外圍鄕鎭尤其是南面的吉安郷發展，故吉安鄉居民購屋時首重區位因素，而花蓮市居民因大都在當地工作，故購屋時首重房屋價格因素（參見附表八及附表九）。

影響家戶住宅消費決策行爲之主要考量因素（即初選指標）包括區位主因素（本研究再細分爲「至工作地點距離」，「至市中心距離」，「至市場距離」，「至公園距離」，「學區」，「至醫療院所之距離」及「交通方便」等七項次因素），環境景觀主因素（本研究再細分爲「附近有無公害污染」與「房屋視野景觀」等兩項次因素），及房價主因素（本研究再細分爲「房價」及「附近地段增値潛力」等兩項次因素）等三大主因素及十一項次因素。依據前述適當指標選取步驟，經由解模糊化之過程，建立各初選指標（即十一項次因素）之重視度（ W_{s} ），以萃取最後住宅消費決策的決選指標。假設本研究以選取 $\mu_{\mathrm{T}}(\mathrm{s})$ 値大於 0.5 以上之指標爲決選指標，將可評選出影響家戶住宅消費決策行爲之決選指標。爲便於比較說明，本研究將以各初選指標重視度的萃取結果進行深入分析探討。以花蓮市而言，依序爲「房價」，「至工作地點距離」，「學區」，「至醫療院所距離」，「有無公害污染」，「至市中心距離」，「至市場距離」，「交通方便」，「地段增値潛力」，「至公園距離」等各決選指標。以吉安㗽而言，依序爲「附近有無公害污染」，「附近地段增値潛力」，「交通方便」，「學區」，「至市場距離」，「房價」，「至工作地點距離」，「房屋視野景觀」等各決選指標，各初選指標的萃取過程分列表二及表三所示。

由花蓮市與吉安鄉初選指標重視程度的萃取結果，對照兩地的實際社會經濟發展情形可知，依據台灣省政府擬定的東部區域計畫（1997）指出花蓮市屬於區域政經文化中心，在東部區域的地位與日遽增。吉安鄉則是都會衛星市鎭近年來發展極爲快速。由表四可知花蓮市自 70 年至 86

表二 花蓮市家戶住宅消費決策各初選指慓重視程度的萃取過程

影響因子	模糊函數	$\mathrm{U}_{\mathrm{L}}(\mathrm{S})$	$\mathrm{U}_{\mathrm{R}}(\mathrm{S})$	$\mathrm{U}_{\mathrm{T}}(\mathrm{S})$
至工作地點距離	$\begin{aligned} & y=-2.094+4.255 x \\ & y=5.760-6.494 x \end{aligned}$	0.411	0.643	＊0．616
至市中心距離	$\begin{aligned} & y=-1.953+4.149 x \\ & y=4.362-5.102 x \end{aligned}$	0.469	0.551	＊0．541
至市場距離	$\begin{aligned} & y=-1.692+4.219 x \\ & y=4.376-5.291 x \end{aligned}$	0.484	0.526	＊0．521
至公園距離	$\begin{aligned} & y=-1.601+4.202 x \\ & y=4.158-5.102 x \end{aligned}$	0.500	0.500	＊0．500
學區	$\begin{aligned} & y=-1.847+4.132 x \\ & y=5.227-6.135 x \end{aligned}$	0.414	0.643	＊0．615
至醫療院所距離	$\begin{aligned} & y=-1.96+4.049 x \\ & y=5.841-6.623 x \end{aligned}$	0.435	0.606	＊0．586
交通方便	$\begin{aligned} & y=-1.949+4.219 x \\ & y=5.088-5.848 x \end{aligned}$	0.486	0.523	＊0．519
附近有無公害污染	$\begin{aligned} & y=-1.271+3.521 x \\ & y=6.708-8.85 x \end{aligned}$	0.445	0.590	＊0．572
房屋視野景觀	$\begin{aligned} & y=-1.675+4.386 x \\ & y=4.177-5.208 x \end{aligned}$	0.503	0.495	0.496
房價	$\begin{aligned} & y=-2.213+4.255 x \\ & y=5.588-6.25 x \end{aligned}$	0.406	0.652	＊0．623
附近地段增値潛力	$\begin{aligned} & y=-17.02+4.255 x \\ & y=4.307-5.28 x \end{aligned}$	0.498	0.504	＊0．503

註：＊表示 $\mathrm{U}_{\mathrm{T}}(\mathrm{S})$ 大於 0.5 者。

年人口成長速度遠低於吉安鄉，此乃因爲其近年來的發展已趨於飽和狀態，能再增加的人口規模十分有限。吉安鄉則因爲地理位置關係已成爲花蓮縣近年來人口增加最快的蒐鎭。

首先，在區位主因素方面，由實際數據觀察，無論從人口密度，學區（以國中小學校數表示），醫療院所數量，已開闢的公園面積及市場數等指標來看，吉安鄉均遠不如花蓮市。再與兩地所萃取的購屋決策重視程度指標比較，至市場距離在吉安鄉民的重要性（排名第五）高於在花蓮市民的重要性（排名第七），可能是因爲吉安鄉的市場數量不足，品質不佳及管理不善所導致。其餘花蓮市民對學區，醫療院所和至公園距離的重要性均高於吉安郷民，其主要原因爲花蓮市的都市化程度較高，能吸引較多人口且密度高，公共設施雖較吉安郷完善，但因其開闢程度並未能滿足花蓮市民的需求，所以花蓮市民對公共設施的興建比吉安鄉民存有較高的期待。此外，由於花蓮市民大都在花蓮市區工作，故至工作地點距離爲第二重要指標。但對吉安嵬民而言，由於該鄉大理石礦藏豐富，製造業家數衆多，且耕地面積較多，使得吉安郷民從事一級產業（農

表三 吉安鄉家戶住宅消費決策各初選指標重視程度的萃取過程

影響因子	模糊函數	$\mathrm{U}_{\mathrm{L}}(\mathrm{S})$	$\mathrm{U}_{\mathrm{R}}(\mathrm{S})$	$\mathrm{U}_{\mathrm{T}}(\mathrm{S})$
至工作地點距離	$\mathrm{y}=-1.179+4.132 \mathrm{x}$ $\mathrm{y}=4.519-5.348 \mathrm{x}$	0.470	0.549	$* 0.540$
至市中心距離	$\mathrm{y}=-1.483+4.31 \mathrm{x}$ $\mathrm{y}=3.851-4.95 \mathrm{x}$	0.531	0.448	0.459
至市場距離	$\mathrm{y}=-1.918+4.115 \mathrm{x}$ $\mathrm{y}=4.917-5.525 \mathrm{x}$	0.430	0.616	$* 0.593$
至公園距離	$\mathrm{y}=-1.738+4.292 \mathrm{x}$ $\mathrm{y}=4.306-5.181 \mathrm{x}$	0.483	0.328	0.423
學區	$\mathrm{y}=-2.230+4.255 \mathrm{x}$ $\mathrm{y}=7.072-8 \mathrm{x}$	0.385	0.685	$* 0.650$
至醫療院所距離	$\mathrm{y}=-1.541+4.132 \mathrm{x}$ $\mathrm{y}=3.929-4.762 \mathrm{x}$	0.505	0.492	0.494
交通方便	$\mathrm{y}=-2.284+4.115 \mathrm{x}$ $\mathrm{y}=8.321-9.174 \mathrm{x}$	0.358	0.733	$* 0.687$
附近有無公害污染	$\mathrm{y}=-2.68+4 \mathrm{x}$ $\mathrm{y}=16.082-16.393 \mathrm{x}$	0.264	0.893	$* 0.815$
房屋視野景觀	$\mathrm{y}=-1.772+4.389 \mathrm{x}$	0.485	0.523	$* 0.519$
房價	$\mathrm{y}=4.416-5.405 \mathrm{x}$			
附近地段增値潛力	$\mathrm{y}=-2.057+4.386 \mathrm{x}$ $\mathrm{y}=6.28-7.576 \mathrm{x}$	0.432	0.608	$* 0.588$
$\mathrm{y}=-2.516+4.032 \mathrm{x}$				
$\mathrm{y}=12.038-12.658 \mathrm{x}$				

註：＊表示 $\mathrm{U}_{\mathrm{T}}(\mathrm{S})$ 大於 0.5 者。

林漁牧等）及二級產業（礦業土石製造業等）人口較花蓮市民爲多（參見表四），故其鄕民工作地點大都在吉安鄉內，加上吉安鄉內交通運輸甚爲便捷，造成對至工作地點距離僅列爲第七重要指標。而交通方便對吉安鄕民的重要性（排名第三）遠較花蓮市民重要（排名第八）的原因，可能是因爲其搭乘公車甚爲不便及該鄕最主要的聯外道路台九丙線（北至花蓮市南至壽豐及鯉魚潭風景特定區）道路不寬，且經常造成龺流量攡擠現象，致使其道路服務水準較低（依據台灣省公路局調查統計），引起吉安鄕民對住宅附近的交通情形甚爲重視。相對而言，由於吉安鄉內的次要道路經台灣省公路局調查結果其服務水準較高，使得其鄉民至該鄉的市中心比花蓮市民至該市市中心區的交通狀況爲佳，以致造成吉安鄉民對該鄉之市中心距離非常不重視。由上述的分析結果，或可說明造成城鄉差異的若干原因。

其次，在環境景觀主因素方面，住宅附近有無公害污染會引起當地甚至花蓮市的居民極爲重視的主要原因可能是因爲當地以水泥，石材加工，木材等易與自然環境景觀資源衝突的地方

資源型工業爲主，極易影響水土保持，破壞生態。加上政府近年來在東部地區大力發展石材加工業與推展水泥業東移政策，例如吉安鄉內目前有經行政院編定的光華石材工業區及光榮砂石專業區，因爲石材加工衍生出來的廢亲物，未經有效的回收處理，將造成環境污染。加以磺場開採多以露天方式進行，對於生態景觀水土保持影響甚鉅，使得吉安鄉民更爲重視公害污染問題。此外，由於近年來位於花蓮市的台泥花蓮廠不斷排放污染廢车物，加上對其擴廠計畫是否應實施環境影響評估的問題，各級政府相互推諉卸責，引起當地民衆及反台泥聯盟等環保團體的極大反對聲浪，而不斷進行抗爭，希望其儘速遷廠。

最後，在房價主因素方面，花蓮市民最重視房價指標的主要因素是因爲其屬於東部區域中心，加上一般交易面積較大，使得除民國 81 及 84 年外，無論在透天厝及店鋪住宅的平均總價均較吉安鄉高（見表五）（註 1 ）。加以花蓮市的住宅自有率低於吉安鄕（見表四），使得當地一般低收入家戶及年輕小家庭家戶因經濟能力不佳而無力購屋。而吉安鄉民較不重視房價因素除平均房屋總價較花蓮市低外，另一可能因素爲吉安鄉在 25 至 64 歲的年齡層居民所佔比例近幾年來均較花蓮市爲高，且大都具有購屋能力之故。至於吉安鄉民對住宅附近地段有無增值潛力較花蓮市民重視的主要原因，如從表五及表六（註2）歷年住宅區房地交易價格變動情形得知，除民國82年外，吉安卽的土地增値率均低於花蓮市。在透天厝方面，吉安鄉除民國87年外，其房價增値率均低於花蓮市。在店鋪住宅方面則除民國83，86年外，其房價增値率亦低於花蓮市。分析其原因主要是受到金融風暴影響，使得房地產市場交易不景氣，而造成吉安薌房地價格大都呈現下滑情形。不過，吉安鄉因有學校設立及大型購物中心成立的利多訊息刺激，促使當地民衆對住宅區房地價格仍然看好頗具增値潛力。而花蓮市民較不重視住宅附近地段有無增値潛力的因素，則主要是因爲其近年來房地交易價格已趨於穩定，受不景氣因素的影響層面較小之故。

經由綜合評估可知，住宅附近有無公害污染，住宅附近地段增值潛力，學區，房價與交通方便等均爲花蓮市與吉安鄉家戶購屋時之主要考量因素，其 $\mathrm{U}_{\mathrm{T}}(\mathrm{S})$ 平均皆大於 0.6 。而上述這些較

表四 花蓮市與壴安鄕社兽經濟弡展現況比較

指標	花蓮市	吉安鄉
平均人口成長率（\％）（70－86年）	5.28	43.34
人口密度（／人）（86年）	3710.71	1090.55
國中小學校數（86年）	18	10
醫療院所數（83年）	114	20
已開闢公園面積（公頃）（86年）	116.71	6.33
市場數（86年）	11	5
一級產業人口比例（\％）（83年）	10.01	20.54
二級產業人口比例（\％）（83年）	27.24	30.56
三級產業人口比例（\％）（83年）	62.75	48.89
公墓數（83年）	2	6
住宅自有率（\％）（79年）	70.7	80.9

資料來源：1．花蓮縣政府（1994），花蓮縣綜合發展計劃。
2．花蓮縣政府（1998），花蓮縣住宅建設計畫之規劃。

表五 花蓮市與吉安郷歷年住宅區房屋交易價格變動情形比較表

年份	花蓮市				吉安鄉			
	透天厝		店鋪住宅		透天厝		店鋪住宅	
	平均總價 （萬元）	增値率 （\％）	平均總價 （萬元）	增値率 （\％）	平均總價 （萬元）	增値率 （\％）	平均總價 （萬元）	增値率 （\％）
81	414.63	－－	503.75	－－	484.71	－－	349.11	
82	507.45	22.39	1103.79	119.10	495.63	2.25	708.40	102.92
83	560.27	10.41	906.41	－17．88	543.97	9.75	660.14	102.92 -6.81
84	564.99	0.81	807.77	－10．88	525.87	－3．33	1019.17	－6．81
85	54.6 .48	－3．28	851.98	5.47	506.44	－3．69	665.71	－34．68
86	544.31	－0．4	697.71	－18．11	465.42	－8．10	676.64	-34.68 1.64
87	515.17	－5．35	616.80	－11．60	461.05	－0．94	516.16	－23．72

表六 花運市與吉安郷歷年住宅區土地交易檟格變動情形比較表

年份	花蓮市		吉安鄉	
	平均單價（萬元／坪）	增値率（\％）	平均單價（萬元／坪）	增値率（\％）
81	9.96	－－	6.94	－－
82	11.76	18.10	9.54	37.46
83	18.71	59.10	9.03	－5．35
84	19.08	1.98	10.00	10.74
85	16.22	－14．99	17.95	79.50
86	13.81	－14．86	11.64	－35．15
87	11.80	－14．55	9.09	－21．91

重視因素均與區位，房價甚至環境景觀因素有關，或許可解釋都市邊緣及外圍地區居民所較重視的購屋因素與區位，房價甚至環境景觀有密切關係。

五，結論與建議

（一）結論

在社會科學研究方法上，模糊理論的使用可說是傳統方法論的推廣。在不動產決策領域上，應用模糊理論的相關研究並不多見，而應用模糊語意變數法進行購屋決策行爲的研究則更爲少見。尤其是近年來有關模糊語意變數法的應用在社會科學中有愈來愈重要的趨勢。本研究爲嘗試將模糊語意變數法應用於不動產決策研究領域上，將具模糊性與不精確性的消費者購屋主觀

行爲加以客觀歸納不同購屋決策者主觀判定下之評價，以得到一個具有共識性且較客觀的結果，並據以建立住宅消費決策評估指標，用來分析家戶住宅消費決策行爲的歷程。

因此，本研究主要係探討消費者購屋決策行爲之衡量方法，以模糊語意變數分析方法做爲衡量模式之構建基礎，並以實例探討其可行性。綜合整個研究過程，可歸納以下幾點結論：
1．本研究依據大多數人對不可量化指標之判斷特性，經由模糊語意變數法之運用與透過次數統計方法進行決策行爲的衡量，且以隸屬度反應所有可能狀況之分布，不但較具理論基礎，提供更多資訊，亦可反映出個體之差異。
2．本研究以「家戶住宅消費决策評估指標」爲例，首先選取十一項初選指標，經指標權重大小評選後，分別自花蓮市選取十項重要決策指標及吉安郳選取八項重要決策指標。由於受限於研究資料取得的限制，本研究僅建立家戶購屋決策的重視程度指標，結果發現花蓮地區居民購屋時比較重視的因素包括「附近有無公害污染」，「地段增値潛力」，「學區」，「房價」，「交通方便」等。不同居住地區的居民，購屋時考量因素的重視程度亦有所不同。而且經由本研究實證分析的結果，或許可以從家戶購屋決策的重視程度指標，解釋造成城鄕差異的部份原因。

（二）建議

本研究嘗試以模糊語意變數法建立「家戶住宅消費決策評估指標」之合理且較切合實際之衡量模式。然而，受限於研究時間及資源之限制，何有一些課題有待後續作更深入之研究。

1．由於一般家戶在進行購屋決策行爲時所面臨的不僅是考慮因素重要性的先後順序問題，不同因素之間的替換（trade－off）關係亦是十分重要的課題。而且不同的購屋動機亦會產生不同的偏好。例如首次購屋者因大都爲初入社會或初具事業基礎，其購屋負擔能力較低，購屋動機大都爲自住使用。基於經桫的考量，在購屋時寧願犧牲較大的住宅空間而會選擇房價較低的小坪數住宅。就換屋者而言，由於其多已具事業基礎或家庭子女逐漸成長甚至成家自立。其購屋動機可能轉變爲以投資，增値爲目的，而會優先考慮住宅空間較大，生活機能完整，交通便利且具增値潛力的佳宅，反而較不重視房價的問題。這種在不同因素之間具有替代關係的課題，在理論上，一般最被廣爲使用的分析方法包括以下兩種模式：
（1）特徵價格理論（Hedonic Price Theory）：
Rosen（1974）探用效用理論結合競䜖理論（Bid Price Theory），探討消費者與供給者如何依據隱含價格（implicit price）在特定空間得到一個空間均衡狀態。國外的相關研究中利用此種方法的相關文獻頗多，例如Halvorsen和Pollakowski（1981）。然而此種方法有兩種基本上的困難：一是住宅價格或住宅支出資料取得不易，二是住宅屬性界定困難。
（2）多項 logit 模型（MNL）：
多項logit模型以個骾消費選擇理論爲基礎（McFadden，1973）。其導源於隨機效用的概念，認爲在理性的緋濟選擇行爲下，家戶 (i) 必然選擇效用最大化的替選方案，亦即家戶 (i) 選擇住宅 $(\mathrm{j}$ ）的機率取決於該住宅所帶給家戶的效用大小。在國外住宅的相關研究中應用此種方法的文獻最多，例如Kain及Quigley（1976），McFadden（1981）。但是此種方法存在許多如本文前述的缺點。由於本研究僅爲初探研究，加上受限於研究時間

及資源的限制，並未針對上述課题進行研究研究設計。因此，在後續研究時，應考量納入上述課題進行分析。
2．在模型的預測效力分析方面，黄盛銘（1996）使用Kendall＇s Tau指標及命中率（Hit Ratio， HR）模式預測效力的評估指標。徐村和等（1998）則是採用修正後的模糊語意尺度之因素分析方式和傳統等距尺度方式進行比較，發現其在整體解釋變異量上較傳統等距尺度方式爲佳。惟本研究受限於研究時間，資源及問卷設計型態的限制，以致於僅以建立「家戶住宅消費决策評估指標」爲例進行模糊語意變數法之實證研究，並未對所建立的模式進行預測或解釋能力的效力分析。故無法獲知所建立的模式是否可以增進原有模式的預測能力，實爲一項缺憾。爲登明此研究方法的重要性，建議後續研究應䊽續對所建立的模型預測或解釋能力進行改進。
3．爲考慮問卷設計之「便利性」以及萃取決選指標的顯著性問題，未來可在問卷設計時詳細說明欲劃分的語意級數分佈（即介紹衡量語意尺度的方式），發展出一套適合不同購屋者的「模糊語意尺度問卷」，以協助受訪者依其眞實感受範圍填寫，如此不偌將可減少尺度之偏誤，以提高其準確度，更能符合問卷的便利性與眞實性。
4．本研究因受限於研究時間，財力，人力之限制，故本研究並未進行調查受訪者認爲各指標在何種狀況下，對衡量決策行爲的影響程度，以致無法建立各決選指標所屬各子集的隸屬度。亦未進行有關如何將決策行爲中之各項重要指標整合成一個綜合評估模式。因其必須透過問卷之設計與調查，得到模式驗證所需要的資料。故無法得知使用該方法之優劣程度，建議未來仍應䊽續更進一步的研究。
5．有關隸屬函數應如何決定，以符合客觀合理之原則，仍爲本研究未來應著重的重點所在，建議後續研究應對其如何建立之問題，提出客觀且可行之方法。例如可利用模糊統計分析法（Fuzzy Statistical Method），建立家戶住宅消費决策指標的隸屬函數。
6．本研究基於研究時間及資源的限制，並未和其它問卷設計方法（例如 $[0,1]$ 區間問卷法）進行比較，以縢解兩者的預測結果是否有明顯的差異。是否使用模糊語意變數法的預測結果已能改善過去存在的缺點，而獲得實登上的支持。建議末來除可探討對其他不動產相關决策領域的適用性與範圍，以騟登本研究所提出之衡量模式的實用度及廣度外，亦可將模糊語意變數法與常用之logit模型等研究方法的預測結果進行比較分析，以評估此一應用是否可以在實證上證明其在不動產決策領域上具有優異性。並進而改善舊有方法論在住宅消費決策行爲研究的缺點，尤其是對於不確定性環境的處理。

註 釋

註 1：由表五中，吉安鄉民國84年店鋪住宅因成交筆數僅6筆，且大都區位佳，故其平均總價較花蓮市高出甚多。
註 2：表六中，吉安響在民國84年及85年各只有一筆土地交易，且區位佳，故其增値率較 花蓮市高。

參考文獻

汪培庄

1990，《模糊集合論及其應用》，中國生產力中心。
阮金祥，徐村和，詹惠君
1998 ，「模糊理論與服務品質管理應用之探討－以北高航線爲例」，《1998企業管理研討會論文集》，東吳大學企業管理學系。
洪鴻智
1997，《可能性理論與模糊數學在風險－效益分析之應用》，台灣大學建築與城䣍研究所博士論文。
徐村和，朱國明，詹惠君，阮金祥
1998 ，「模糊語意尺度應用於服務接觸與顧客滿意相關性研究－以廣告代銷業人員爲例」，《中華民國第六屆模糊理論及其應用研討會論文集》。
曹勝雄，曾國雄，江勁毅
1996，「傳統計量迴歸，模糊迴歸，GMDH，類神經網路四種方法在預測應用之比較－以國人赴港旅客需求之預測爲例」，《中國統計學報》，34（2）：132－161。
陳彥仲
1997，「住宅選擇之程序性決策模式」，《住宅學報》，5：37－49。陳偉傑

1997，《市場導向的模糊群組定位模式－以信用卡產業爲例》，義守大學管理科學研究所碩士論文。
曾國雄，邱怡璋，陳君杰
1997，「模糊敘述性偏好整合模式之研究」，《模糊系統學刊》，3（2）：39－51。馮正民，呂秀玉

1997，「模糊方法在質化評估準則之運用－交通建設土地徵收難易度爲例」，《都市與計畫》， 24（1）：1－21。
黃俊英
1991，《多變量分析》，中國經濟研究所。黃建勝

1989，《台南市民的住宅需求特性之研究》，成功大學工業管理研究所碩士論文。黃盛銘

1996，《小汽車消費選擇行爲一模糊多屬性效用模式》，義守大學管理科學研究所碩士論文。劉怡吟

1996，《台北市家戶住宅選擇變遷之研究》，政治大學地政研究所碩士論文。鄧振源，曾國雄，林幸加

1989 ，「模糊決策原理及其應用」，《交通運輸》，11：99－125。 Bagnoli，C．and H．C．Smith

1998，＂The Theory of Fuzzy Logic and its Application to Real Estate Valuation＂，Journal of Real Estate Research，16（2）：169－199．
Bellman，R．E．and L．A．Zadah
1970，＂Decision－Making in a Fuzzy Environment＂，Management Science，17（4）：141－164．
Chen，S．J．and C．L．Hwang
1992，＂Fuzzy Multiple Attribute Decision Making－Methods and Applications＂，Germany： Springer－Verlag，465－486．
Asker，D．
1981，＂Factor Analysis：An Exposition，＂in D．Asker（ed．），Multivariate Analysis in Marketing，2nd ed．，163－171．
Dubios，D．and H．Prade
1983，＂Ranking Fuzzy Numbers in the Setting of Possibility Theory，＂Information Science，30：183－ 224.

Hair，J．F．，et al．
1995，Multivariate Data Analysis with Readings，4th ed．，New York：Prentice－Hall Inc．
Halvorsen，R．and H．O．Pollakowski
1981，＂Choice of Functional Form for Hedonic Price Equations＂，Journal of Urban Economics，37－ 49.

Kain，J．F．and J．M．Quigley
1976，＂Housing Market and Racial Discrimination：A Microeconomic Analysis＂，Natural Bureau of Economic Research，New York．
Klir，G．J．and T．A．Folger
1988，Fuzzy Sets，Uncertainty and Information，Prentice－Hall．
Klir，G．J．and B．Yuan
1995，Fuzzy Sets and Fuzzy Logic－Theory and Applications，2nd Edition，全華書局代理。
Lau，K．N．and Gerald V．Post
1993，＂Evaluating Consumer Preferences for Existing Multiattribute Products：A Non－Metric Approach，＂Decision Science，24：200－8．
Liang，G．S．and M．J．Wang
1991，＂A Fuzzy Multicriteria Decision Making Method for Facility Site Selection＂，International Journal of Production Research，29（11）：2313－2330．
McFadden，D．
1973，＂Conditional Logit Analysis and Qualitative Choice Behavior＂，in Frontiers in Economics， P．Zaremka ed．，Academic Press，New York．
McFadden，D．，et al．
1981，＂Econometric Models of Probability Choice＂，in Structural Analysis of Discrete Data：with Economic Applications，MIT Press．
Rosen，S．

1974，＂Hedonic Price and Implicit Market：Product Differention in Pure Competition＂，Journal of Political Economy，82：34－55．
Tanaha，H．，et al．
1982，＂Linear Regression Analysis with Fuzzy Model＂，IEEE Transactions on Systems，Man，and Cybernetics，12：903－7．
Herzog，T ．
1996，Research Methods and Data Analysis in the Social Sciences，Addison Wesley Longman Publishers Inc．

附表一 受訪者問卷調查樣本統計表

類別	花蓮市（百分比）	吉安鄕（百分比）
調查份數	1400	700
回收份數	$1397(99.79)$	$700(100)$
有效問卷	$1330(95)$	$700(100)$
無效問卷	$67(4.79)$	$0(0)$

附表二 受訪者性別

類別	花蓮市（百分比）	吉安郷（百分比）
男	$701(52.7)$	$364(52)$
女	$629(47.3)$	$336(48)$

附表三 受訪者年齡

分類	花蓮市（百分比）	吉安鄉（百分比）
$21-30$ 歲	$400(30.1)$	$259(37)$
$31-40$ 歲	$408(30.7)$	$182(26)$
$41-50$ 歲	$333(25.0)$	$147(21)$
$51-60$ 歲	$127(9.5)$	$56(8)$
61歲以上	$62(4.7)$	$49(7)$

附表四 受訪者教育程度

分類	花蓮市（百分比）	吉安鄉（百分比）
小學或以下	$166(12.5)$	$28(4)$
國中	$281(21.1)$	$119(17)$
高中高職	$477(35.9)$	$294(42)$
專科大學	$328(24.7)$	$196(28)$
研究所以上	$78(5.9)$	$63(9)$

附表五 受訪者所得水準

分類	花蓮市（百分比）	吉安鄉（百分比）
1萬以下	$60(4.5)$	$21(3)$
$1-2$ 萬	$247(18.6)$	$63(9)$
$2-3$ 萬	$340(25.6)$	$168(24)$
$3-4$ 萬	$320(24.1)$	$231(33)$
$4-5$ 萬	$179(13.5)$	$147(21)$
5 萬以上	$184(13.8)$	$70(10)$

附表六 受訪者職業類別

類別	花蓮市（百分比）	吉安鄉（百分比）
1萬以下	$60(4.5)$	$21(3)$
專技及主管	$303(22.8)$	$175(25)$
服務型人員	$485(36.5)$	$161(23)$
第力型人員	$352(27.2)$	$147(21)$
其他	$180(13.5)$	$98(14)$

附表七 受訪者家戶規模

類別	花蓮市（百分比）	吉安鄉（百分比）
5人以下	$709(53.3)$	$511(73)$
5人以上	$621(46.7)$	$189(27)$

附表八 受訪者是否在未來一年内有購屋意願

類別	花蓮市（百分比）	吉安郷（百分比）
是	$912(68.6)$	$537(77)$
否	$418(31.4)$	$163(23)$

附表九 受訪者購屋時之首要考慮因素

類別	花蓮市（百分比）	吉安鄉（百分比）
房價	$270(29.6)$	$182(34)$
住宅類型	$212(23.2)$	$37(7)$
坪數	$180(19.7)$	$102(19)$
區位	$250(27.4)$	$216(40)$

註：住宅類型係指透天厝，公寓，大廈。

[^0]: ＊國立成功大學都市計劃學系博士班研究生。
 ＊＊國立成功大學都市計劃學系副教授。

